计算机科学 ›› 2020, Vol. 47 ›› Issue (6A): 325-331.doi: 10.11896/JsJkx.190600103

• 信息安全 • 上一篇    下一篇

图像隐写分析算法研究概述

彭伟1, 胡宁2, 胡璟璟1   

  1. 1 国防科技大学计算机学院 长沙 410073;
    2 广州大学网络空间安全研究院 广州 510006
  • 发布日期:2020-07-07
  • 通讯作者: 彭伟(wpeng@nudt.edu.cn)

Overview of Research on Image Steganalysis Algorithms

PENG Wei1, HU Ning2 and HU Jing-Jing1   

  1. 1 College of Computer,National University of Defense Technology,Changsha 410073,China
    2 Institute of Cyber-space Security,Guangzhou University,Guangzhou 510006,China
  • Published:2020-07-07
  • About author:PENG Wei, research fellow at department of cyber security, college of computer, national university of defense technology, is a senior member of CCF.His main research interests include techniques of computer networks and network security.

摘要: 图像隐写技术可以在互联网上传输各种数字图片中隐藏的敏感或秘密信息,在过去二十多年中得到了快速的发展,并被不法分子用来交换可能危害社会安全的信息。为消除这些危害,相应发展了各种图像隐写分析技术。通过检查可疑图片中隐藏的秘密信息,图像隐写分析可以提供数字法理证据。在图像隐写算法发展现状分析的基础上,将图像隐写分析算法分为专用和通用隐写分析算法两大类,对图像隐写分析技术进行了介绍和归纳。在专用算法方面,分别介绍了针对特定图像隐写算法和针对特定图像类型的图像隐写分析途径。在通用算法方面,介绍了基于图像特征的图像隐写分析方法的一般流程,归纳总结了图像隐写分析常用的几类图像特征。通过回顾图像隐写分析的已有工作,分析了图像隐写分析中采用的技术,包括基于机器学习的分类方法、特征选择方法等。最后,对图像隐写分析的未来研究发展方向做了简要的讨论。

关键词: 信息隐藏, 图像隐写分析, 图像隐写分析算法, 机器学习, 特征选择

Abstract: Image steganography is the technique to hide sensitive or secret data in digital pictures transmitted on the Internet.It has gone through fast development during the past two decades,and is utilized by criminals including terrorists to exchange information which may threaten social security.Many kinds of image steganalysis techniques have been developed to fight back the threat.By examining the secret information hidden in the suspicious images,image steganalysis can provide digital forensic evidence.This paper firstly gave a survey on the research status of algorithms of image steganography,then introduced and summarized the image steganalysis techniques by classifying them into two categories:specialized algorithms and generalized algorithms.For specialized algorithms,the approaches designed for specific image steganography algorithms and specific image types are introduced respectively.For generalized algorithms,the general procedures of image steganalysis based on image features are described.Then several classes of image features used for image steganalysis are summarized.Furthermore,the techniques used in general image steganalysis including machine learning-based classification and feature selection are analyzed by reviewing the existing research work on image stenanalysis.At last,a brief discussion on future research directions of image steganalysis is presented.

Key words: Information hiding, Image steganalysis, Image steganalysis algorithm, Machine learning, Feature selection

中图分类号: 

  • TP309.2
[1] LIU H X,XIA C H.Overview of Steganalytic Algorithm to Digi-tal Images .Computer Engineering and Design,2006,27(1):21-25.
[2] WANG S Z,ZHANG X P,ZHANG W M.Recent Advances in Image Based Steganalysis Research .Chinese Journal of Computers,2009,32(7):1247-1263.
[3] ZHANG J,XIONG F,ZHANG D.Overview on Image Steganaly-sis Technology .Computer Engineering,2013,39(4):165-168.
[4] DONG J,QIAN Y L,WANG W.Recent Advances in Image Steganalysis .Journal of Image and Signal Processing,2017,6(3):131-138.
[5] KARAMPIDIS K,KAVALLIERATOU E,PAPADOURAKIS G.A Review of Image Steganalysis Techniques for Digital Forensics .Journal of Information Security and Applications,2018,40:217-235.
[6] GUAN Q X,ZHU J,ZHAO X F,et al.Image Steganalysis Based on Linear Programing Feature Selection and Ensemble Classifier .Journal of Cyber Security,2018,3(1):83-94.
[7] KADHIM I J,PREMARATNE P,VIAL P J,et al.Comprehensive Survey of Image Steganography:Techniques,Evaluations,and Trends in Future Research .Neurocomputing,2019,335:299-326.
[8] PROVES N,HONCYMAN P.Hide and Seek:An Introduction to Steganography .IEEE Security & Privacy,2003,1(3):32-44.
[9] PAN F,LI J,YANG X.Image Steganography Method based on PVD and Modulus Function // Proceedings of the 2011 International Conference on Electronics,Communications and Control (ICECC),2011:282-284.
[10] KAWAGUCHI K,EASON R O.Principle and Application of BPCS Steganography // Proceedings of SPIE Multimedia Systems and Applications.Boston,1998:464-472.
[11] FRIDRICH J,GOLJAN M,DU R.Detecting LSB Steganography in Color and Gray-Scale Images .IEEE Multimedia,2001,8(4):22-28.
[12] Proves N.Defending Against Statistical Steganalysis // 10th USENIX Security Symposium.2001:24-25.
[13] WESTFELD A.F5-A Steganographic Algorithm:High Capacity Despite Better Steganalysis//Proceedings of 4th InternationalInformation Hiding Workshop.Pittsburgh,2001:289-302.
[14] KUMAR V,KUMAR D.A Modified DWT-based Image Steganography Technique .Multimedia Tools and Applications,2018,77(11):13279-13308.
[15] SALLEE P.Model-based Steganography // Proceedings of the International Workshop on Digital Watermarking.LNCS,vol.2939,Springer,2003:154-167.
[16] SHAFEE S,RAJAEI B.A Secure Steganography Algorithm Using Compressive Sensing based on HVS Feature // Proceedings of the 2017 Seventh International Conference on Emerging Security Technology.IEEE,2017:74-78.
[17] GIRDHAR A,KUMAR V.Comprehensive Survey of 3D Image Steganography Techniques .IET Image Processing,2018,12(1):1-10.
[18] RABIE T,KAMEL I.High-capacity Steganography:a Global-adaptive-region Discrete Cosine Transform Approach .Multimedia Tools and Applications,2017,76(5):6473-6493.
[19] HONG W.Human Visual System based Data Embedding Method Using Quadtree Partitioning .Signal Processing:Image Communication,2012,27(10):1123-1133.
[20] XIAO J J,LU Q.Adaptive Steganography Algorithm Based on Vision Effect .Journal of Test and Measurement Technology,2012,26(1):9-14.
[21] ZHOU Z,SUN H,HARIT R,et al.Coverless Image Steganography without Embedding // International Conference on Cloud Computing and Security,LNCS,vol.9483.Springer International Publishing,2015:123-132.
[22] WU J,LIU Y,DAI Z,et al.A Coverless Information Hiding Algorithm Based on Grayscale Gradient Co-occurrence Matrix .IETE Technical Review,2018,35(sup1):23-33.
[23] RUAN S H,QIN Z C.Coverless Covert Communication based on GIF Image .Communications Technology,2017,50(7):160-167.
[24] ZHANG X,PENG F,LONG M.Robust Coverless Image Steganography Based on DCT and LDA Topic Classification .IEEE Transactions on Multimedia,2018,20(12):3223-3238.
[25] DUAN X,SONG H,QIN C,et al.Coverless Steganography for Digital Images Based on a Generative Model .Computers,Materials & Continua,2018,55(3):483-493.
[26] WESTFELD A,PFITZMANN A.Attacks on Steganographic Systems // Proc.of International Workshop on Information Hiding (IH’99).Springer-Verlag,LNCS,1999:61-76.
[27] KWANGSOO L,JUNG C,LEE S,et al.New Steganalysis Methodology:LR Cube Analysis for the Detection of LSB Steganography // Proc.of International Workshop on Information Hiding (IH’05).Springer-Verlag,LNCS,2005:312-326.
[28] ZHANG T,PING X.A New Approach to Reliable Detection of LSB Steganography in Natural Images .Signal Processing,2003,83(10):2085-2093.
[29] ZHANG X P,WANG S Z.Statistical Analysis Against Spatial BPCS Steganography .Journal of Computer Aided Design & Computer Graphics,2005,17(7):1625-1629.
[30] ZIOU D,JAFARI R.Efficient Steganalysis of Images:Learning is Good for Anticipation .Pattern Analysis Applications,2014,17(2):279-289.
[31] FRIDRICH J,GOLJAN M,HOGEA D.Steganalysis of JPEG Images:Breaking the F5 Algorithm // Proc.of International Workshop on Information Hiding (IH’02).LNCS,2578,2002:310-323.
[32] HAN X D,PING X J,ZHANG T.Steganalysis Based on the Differences of Coefficient Combinations of 0,1 for Detecting F5 Steganography .Journal of Information Engineering University,2009,10(2):184-187.
[33] PROVOS N,HONEYMAN P.Detecting Steganographic Content on the Internet // Proc.of ISOC NDSS’02.2002:408-412.
[34] ZHANG T,PIRLG X.A Fast and Effective Steganalytic Technique Against Jsteg-like Algorithms // Proc.of 2003 ACM Symposium on Applied Computing.ACM Press,2003:307-311.
[35] LEE K,WESTFELD A,LEE S.Generalized Category Attack - Improving Histogram-based Attack on JPEG LSB Embedding // Proc.of 9th Information Hiding Workshop.Springer,LNCS,2007:35-48.
[36] FRIDRICH J,GOLJAN M,HOGEA D.New Methodology for Breaking Steganographic Techniques for JPEGs // Proc.of IS&T/SHE Electronic Imaging:Security and Watermarking of Multimedia Contents V.SPIE,2003:143-155.
[37] LYU S,FARID H.Detecting Hidden Messages Using Higher-Order Statistics and Support Vector Machines // Proc.IH’02,Springer-Verlag.LNCS,2002:340-354.
[38] FARID H,LYU S.Higher-order Wavelet Statistics and Their Application to Digital Forensics // Computer Vision and Pattern Recognition Workshop (CVPRW’03).2003:94-94.
[39] HE J H,LIANG X P,LI J Q,et al.Image Steganalysis Based on Bit-Plane Statistical Correlation Using Support Vector Machine .Acta Scientiarum Naturalium Universitatis Sunyatseni,2004,43(sup2):17-20.
[40] PEVNY T,BAS P,FRIDRICH J.Steganalysis by Subtractive Pixel AdJacency Matrix .IEEE Transactions on Information Forensics and Security,2010,5(2):215-224.
[41] FRIDRICH J,KODOVSKY J.Rich Models for Steganalysis of Digital Images .IEEE Transactions on Information Forensics and Security,2012,7(3):868-882.
[42] HOLUB V,FRIDRICH J.Random ProJections of Residuals for Digital Image Steganalysis.IEEE Transactions on Information Forensics and Security,2013,8(12):1996-2006.
[43] WHITAKER J M,KER A D.Steganalysis of Overlapping Images .Proceedings of SPIE,vol.9409,Media Watermarking,Security,and Forensics,2015,94090X.
[44] AVCIBAS I,MEMON N,SANKUR B.Steganalysis Using Image Quality Metrics .IEEE Transactions on Image Processing,2003,12(2):221-229.
[45] SHI Y,CHEN C,CHEN W.A Markov Process based Approach to Effective Attacking JPEG Steganography // Proc.of 8th International Workshop on Information Hiding (IH’2006).Springer,LNCS,2007:249-264.
[46] PEVNY T,FRIDRICH J.Merging Markov and DCT Features for Multi-Class JPEG Steganalysis // Proc.of SPIE Electronic Imaging.Photonics West,2007:3-4.
[47] KODOVSKY J,FRIDRICH J.Calibration revisited // Proceedings of the 11th ACM Workshop on Multimedia and Security (MM&Sec’09).New York,ACM,2009:63-74.
[48] GUAN J B.Research and Implementation of Steganalysis for JPEG Images .Guilin:Guilin University of Electronic Technology,2013.
[49] KODOVSKY J,FRIDRICH J.Steganalysis of JPEG Images Using Rich Models // Proc.of SPIE Electronic Imaging,Media Watermarking.Security,and Forensics,2012:1-13.
[50] HULOB V,FRIDRICH J.Low-Complexity Features for JPEG Steganalysis Using Undecimated DCT .IEEE Transactions on Information Forensics and Security,2015,10(2):219-228.
[51] SONG X,LIU F,YANG C,et al.Steganalysis of Adaptive JPEG Steganography Using 2D Gabor Filters // Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security (IH&MMSec’15).New York:ACM,2015:15-23.
[52] WANG C,FENG G.Calibration-based Features for JPEG Steganalysis Using Multi-level Filter // Proc.of IEEE International Conference on Signal Processing,Communications and Computing (ICSPCC 2015).2015.
[53] SAJEDI H.Adaptive Image Steganalysis .Multimedia Tools and Applications,2018,77(13):17269-17284.
[54] FRIDRICH J.Feature-based Steganalysis for JPEG Images and Its Implications for Future Design of Steganographic Schemes // Proc.of 6th Information Hiding Workshop.Springer,LNCS,2004:67-81.
[55] FU D,SHI Y Q,ZOU D,et al.JPEG Steganalysis Using Empirical Transition Matrix in Block DCT Domain // International Workshop on Multimedia Signal Processing (MMSP’2006).2006:310-313.
[56] DONG J,WANG W,TAN T N.Multi-Class Blind Steganalysis Based on Image Run-Length Analysis // Proc.of International Workshop on Digital Watermarking (IWDW’09).LNCS,2009:199-210.
[57] XU M.Steganalysis for JPEG Image Based on SVM .Changsha:Hunan University,2012.
[58] WANG L N,WANG H S,ZHAI L M,et al.A Blind Steganalytic Method to Detect JPEG Image Steganography .Journal of Wuhan University (Nature Science Edition),2018,64(3):217-224.
[59] BABU J,RANGU S,MANOGNA P.A Survey on Different Feature Extraction and Classification Techniques Used in Image Steganalysis .Journal of Information Security,2017,8(3):186-202.
[60] XU G,WU H,SHI Y.Structural Design of Convolutional Neural Networks for Steganalysis .IEEE Signal Processing Letters,2016,23(5):708-712.
[61] YE J,NI J,YI Y.Deep Learning Hierarchical Representations for Image Steganalysis .IEEE Transactions on Information Forensics and Security,2017,12(11):2545-2557.
[62] WU S,ZHONG S,LIU Y.Deep residual learning for image steganalysis .Multimedia Tools and Applications,2018,77(9):10437-10453.
[63] GAO P X,WEI L X,LIU J,et al.Image Steganalysis Based on Deep Residual Neural Network .Computer Engineering and Design,2018,39(10):3045-3049.
[64] QIN B.JPEG Images Steganalysis Research Based on Bayes Decision .Shenyang:Northeastern University of China,2011.
[65] KODOVSKY J,FRIDRICH J,HOLUB V.Ensemble Classifiers for Steganalysis of Digital Media .IEEE Transactions on Information Forensics and Security,2012,7(2):432-444.
[66] MA Y,LUO X,LI X,et al.Selection of Rich Model Steganalysis Features Based on Decision Rough Set α-Positive Region Reduction .IEEE Transactions on Circuits and Systems for Video Technology,2019,29(2):336-350.
[67] ADELI A,BROUMANDNIA A.Image Steganalysis Using Improved Particle Swarm Optimization Based Feature Selection .Applied Intelligence,2018,48(6):1609-1622.
[68] WU M Q,ZHU Z L,JIN S Y.Secret Key Estimation in Sequential Steganography Based on the Laplacian Model .Computer Engineering & Science,2008,30(2):9-14.
[69] CHAUMONT M.Deep Learning in Steganography and Steganalysis from 2015 to 2018 .Draft,Montpellier University,2019.
[1] 李吟, 李必信. 基于脚本预测和重组的内存泄漏测试加速技术[J]. 计算机科学, 2020, 47(9): 31-39.
[2] 丁钰, 魏浩, 潘志松, 刘鑫. 网络表示学习算法综述[J]. 计算机科学, 2020, 47(9): 52-59.
[3] 苏畅, 张定权, 谢显中, 谭娅. 面向5G通信网络的NFV内存资源管理方法[J]. 计算机科学, 2020, 47(9): 246-251.
[4] 董明刚, 黄宇扬, 敬超. 基于遗传实例和特征选择的K近邻训练集优化方法[J]. 计算机科学, 2020, 47(8): 178-184.
[5] 王慧, 乐孜纯, 龚轩, 武玉坤, 左浩. 基于特征分类的链路预测方法综述[J]. 计算机科学, 2020, 47(8): 302-312.
[6] 袁野, 和晓歌, 朱定坤, 王富利, 谢浩然, 汪俊, 魏明强, 郭延文. 视觉图像显著性检测综述[J]. 计算机科学, 2020, 47(7): 84-91.
[7] 张严, 秦亮曦. 基于Levy飞行策略的改进樽海鞘群算法[J]. 计算机科学, 2020, 47(7): 154-160.
[8] 王萌, 丁志军. 一种新的设备指纹特征选择及模型构建方法[J]. 计算机科学, 2020, 47(7): 257-262.
[9] 任帅, 王萌, 范傲雄, 高泽, 徐解, Shahzad KHURRAM, 张弢. 一种零高分辨率3D网格模型的信息隐藏算法[J]. 计算机科学, 2020, 47(7): 328-334.
[10] 包振山, 郭俊南, 谢源, 张文博. 基于LSTM-GA的股票价格涨跌预测模型[J]. 计算机科学, 2020, 47(6A): 467-473.
[11] 徐江峰谭玉龙. 基于机器学习的HBase配置参数优化研究[J]. 计算机科学, 2020, 47(6A): 474-479.
[12] 李金霞, 赵志刚, 李强, 吕慧显, 李明生. 改进的局部和相似性保持特征选择算法[J]. 计算机科学, 2020, 47(6A): 480-484.
[13] 朱林立, 华钢, 高炜. 决定图框架下本体学习算法的稳定性分析[J]. 计算机科学, 2020, 47(5): 43-50.
[14] 蹇松雷, 卢凯. 复杂异构数据的表征学习综述[J]. 计算机科学, 2020, 47(2): 1-9.
[15] 刘苗苗,扈庆翠,郭景峰,陈晶. 符号网络链接预测算法研究综述[J]. 计算机科学, 2020, 47(2): 21-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .