计算机科学 ›› 2014, Vol. 41 ›› Issue (10): 87-90.doi: 10.11896/j.issn.1002-137X.2014.10.020

• 2013’和谐人机环境联合学术会议 • 上一篇    下一篇

面向图像超分辨率的上下文字典学习

于伟,姚鸿勋,孙晓帅,刘先明,许鹏飞   

  1. 哈尔滨工业大学计算机科学与技术学院 哈尔滨150001;哈尔滨工业大学计算机科学与技术学院 哈尔滨150001;哈尔滨工业大学计算机科学与技术学院 哈尔滨150001;哈尔滨工业大学计算机科学与技术学院 哈尔滨150001;哈尔滨工业大学计算机科学与技术学院 哈尔滨150001
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然基金项目(61071180),国家自然基金重点项目(61133003)资助

Contextual Dictionary Learning for Super Resolution

YU Wei,YAO Hong-xun,SUN Xiao-shuai,LIU Xian-ming and XU Peng-fei   

  • Online:2018-11-14 Published:2018-11-14

摘要: 基于稀疏表示理论,提出了一种面向单张图片超分辨率的字典学习方法。通过对训练数据进行分类,期望在每一类训练数据训练字典的过程中,增强类内的上下文信息。与之前的面向图像分类的字典学习方法所不同的是,训练数据集由高分辨率图像块和对应的低分辨率图像块共同组成,这使训练得到的字典更适用于图像重构。利用有限的训练数据集,基于上下文的字典学习方法能够提高字典表示的拓展能力,消除由多重训练数据子集带来的冗余。

关键词: 单张图片超分辨率,稀疏表示,上下文字典,图像块分类

Abstract: This paper proposed a novel dictionary learning method for single image super resolution based on sparse representation.We tried to utilize patch-level clustering to enhance the contextual information in atom learning stage.Unlike the previous dictionary learning works using the image classification,our training set is constructed from the high-resolution and low-resolution patch pairs labeled by different patch-level class,which is more appropriate for image reconstruction.This approach tried to promote the transfer ability of the dictionary which is built on a limited training set and can eliminate the atoms redundancy introduced by multiple training subsets.

Key words: Single image super resolution,Sparse representation,Contextual dictionary,Patch-level clustering

[1] Freeman W,Pasztor E,Carmichael O.Learning lowe-level vision[J].IJCV,2000,40(1):25-47
[2] Sun J,Zheng N,Tao H,et al.Image hallucination with primal sketch priors [C]∥CVPR.2005:36-43
[3] Yang J,Wright J,Huang T,et al.Image super-resolution assparse representation of raw image patches[C]∥CVPR.2008:1-8
[4] Yang M,Zhang L,Feng X,et al.Fisher discrimination dictionary learning for sparse representation[C]∥IEEE ICCV.2011:543-550
[5] Zhou N,Shen Y,Peng J,et al.Learning Inter-related Visual Dictionary for Object Recognition[C]∥CVPR.2012:3490-3497
[6] Chang H,Yeung D-Y,Xiong Y.Super-resolution through neighbor embedding[C]∥CVPR.2004

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!