计算机科学 ›› 2015, Vol. 42 ›› Issue (2): 131-133.doi: 10.11896/j.issn.1002-137X.2015.02.028

• 信息安全 • 上一篇    下一篇

树突细胞算法及其理论研究

方贤进,王丽,康佳,刘佳   

  1. 安徽理工大学计算机学院 淮南232007,安徽理工大学计算机学院 淮南232007,安徽理工大学计算机学院 淮南232007,安徽理工大学计算机学院 淮南232007
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然科学基金(61240023)资助

On Dendritic Cell Algorithm and its Theoretical Investigation

FANG Xian-jin, WANG Li, KANG Jia and LIU Jia   

  • Online:2018-11-14 Published:2018-11-14

摘要: 树突细胞算法(DCA)是受先天性免疫系统中树突细胞(DCs)功能的启发而开发的算法,它已被成功运用于许多计算机安全相关领域。但是对DCA理论方面的分析工作很少,对算法大多数理论方面的研究也较少出现。而其它的人工免疫算法如负选择算法、克隆选择算法在理论方面的研究工作却出现在很多文献中。因此对DCA算法进行相似的理论分析,确定算法的运行时间复杂度,揭示其它算法的属性就显得非常重要。根据算法执行的3个阶段,通过引入3个运行时间变量实现对DCA算法的理论分析。标准DCA算法取得的运行时间复杂度下界为Ω(n),而在最坏情况下的时间复杂度为O(n2)。另外,如果利用“分片”方法实现DCA的在线分析组件,则算法的运行时间复杂度可以改进为O(max(nN,nδ))。

关键词: 树突细胞算法,形式化描述,运行时间复杂度

Abstract: Dendritic cell algorithm (DCA) is inspired by functions of the dendritic cells (DCs) of the innate immune system,and has been successfully applied to numerous security-related problems.However,theoretical analysis of the DCA has barely been performed,and most theoretical aspects of the algorithm have not yet been revealed.Other immune inspired algorithms,such as negative and clonal selection algorithms,are theoretically presented in many literatures.As a result,it is important to conduct a similar theoretical analysis of the DCA,and determine its runtime complexity and other algorithmic properties in line with other artificial immune algorithms.Theoretical analysis was implemented via introduction of three runtime variables in terms of three phases of the algorithm.The standard DCA achieves a lower bound of Ω(n) runtime complexity and an upper bound of O(n2) runtime complexity under the worst case.In addition,the algorithm’s runtime complexity can be improved to O(max(nN,nδ)) by using segmentation approach for online analysis component.

Key words: Dendritic cells algorithm,Formal description,Runtime complexity

[1] Greensmith J.The Dendritic Cell Algorithm[D].Nottingham:University of Nottingham,2007
[2] Leandro N,De Castro J T.Artificial Immune Systems:A New Computational Intelligence Approach[M].London:Springer-Verlag,Inc,2002
[3] Greensmith U A.Dendritic Cells for SYN Scan Detection[C]∥Proceedings of the Genetic and Evolutionary Computation Conference (GECCO2007).London,UK:ACM Press,2007:49-56
[4] Al-Hammadi Y,Aickelin U,Greensmith J.DCA for Bot Detec-tion[C]∥Proceedings of the IEEE World Congress on Computational Intelligence (WCCI 2008).Berlin Heidelberg:Springer-Verlag,2008:1807-1816
[5] Oates R,J G,Aickelin U,et al.The Application of a Dendritic Cell Algorithm to a Robotic Classifier[C]∥Proceedings of the 6th International Conference on Artificial Immune (ICARIS 2007).2007:204-215
[6] Greensmith J,Feyereisl J,Aickelin U.The DCA:SOMe Comparison A comparative study between two biologically-inspired algorithms[J].Evolutionary Intelligence,2008,1(2):85-112
[7] Stibor T R O,Kendall G,et al.Geometrical insights into the dendritic cell algorithm[C]∥Proc.of the Genetic and Evolutionary Computation Conference (GECCO).2009:1275-1282
[8] Oates R.The Suitability of the Dendritic Cell Algorithm for Robotic Security Applications[D].Nottingham:School of Computer Science,University of Nottingham,2010
[9] Feng Gu,Julie G,Uwe A.The Dendritic Cell Algorithm for In-trusion Detection[J].Bio-Inspired Communications and Networking,IGI Global,2011:84-102
[10] Greensmith J,U A.The Deterministic Dendritic Cell Algorithm[C]∥Proceedings of the 7th International Conference on Artificial Immune Systems (ICARIS 2008).Phuket,Thailand.Lecture Notes in Computer Science Volume 5132,2008:291-302
[11] Gu Feng,J G,Aickelin U.Integrating Real-Time Analysis With The Dendritic Cell Algorithm Through Segmentation[C]∥Proceedings of the Genetic and Evolutionary Computation Conference(GECCO2009).Montreal,Canada,2009 (下转第156页)(上接第133页)
[12] Elberfeld M,J T.Negative selection algorithms on strings with efficient training and linear-time classification[J].Theoretical Computer Sicence,2011,412(6):534-542
[13] Zarges C.Rigorous runtime analysis of inversely fitness proportional muation rates[C]∥Proceedings of Parallel Problem Solving from Nature (PPSN).LNCS 5199,2008:112-122
[14] Zarges C.On the utility of the population size for inversely fitness proportional mutation rates[C]∥Proceedings of the 10th ACM SIGEVO Workshop on Fundations of Genetic Algorithms (FOGA).2009:39-46
[15] Timmis J,Home A,Stibor T,et al.Theoretical advance in artificial immune systems[J].Theoretical Computer Science,2008(403):11-32
[16] Janse T,Zarges C.Analyzing different variants of immune inspired somatic contiguous hypermutations[J].Theoretical Computer Science,2011,412(6):517-533

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!