计算机科学 ›› 2016, Vol. 43 ›› Issue (1): 315-319.doi: 10.11896/j.issn.1002-137X.2016.01.068

• 图形图像与模式识别 • 上一篇    

基于有效维度特征的手背静脉识别算法

贾旭,孙福明,曹玉东,崔建江,薛定宇   

  1. 辽宁工业大学电子与信息工程学院 锦州121001,辽宁工业大学电子与信息工程学院 锦州121001,辽宁工业大学电子与信息工程学院 锦州121001,东北大学信息科学与工程学院 沈阳110819,东北大学信息科学与工程学院 沈阳110819
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金(61272214,6),辽宁省教育厅一般项目(L2013241)资助

Dorsal Hand Vein Recognition Algorithm Based on Effective Dimensional Feature

JIA Xu, SUN Fu-ming, CAO Yu-dong, CUI Jian-jiang and XUE Ding-yu   

  • Online:2018-12-01 Published:2018-12-01

摘要: 针对手背静脉识别过程中采集的图像出现干扰信息的问题,提出了一种基于有效维度特征的识别算法。首先,该算法对采集的图像进行自适应中值滤波去噪;其次,对图像进行分块处理,并基于混合高斯模型与梯度信息对子图像提取特征;然后,依据子图像间特征相似性,提出了判断子图像是否为干扰信息的方法;最后,融合所有真实静脉区域的特征,形成特征向量,并采用基于稀疏表示的算法对多种有效维度下的特征向量进行匹配。实验表明,该算法具有较高的准确识别率,即使采集的手背静脉图像存在部分遮挡,算法依然能够获得较好的识别效果。

关键词: 静脉识别,混合高斯模型,稀疏表示,有效维度

Abstract: During dorsal vein recognition processing,for the problem that there may be some distractive information in acquired image,a recognition algorithm based on effective dimensional feature was proposed.Firstly,adaptive median filtering algorithm is applied in acquired image for denoising.Secondly,image is divided into blocks,and every sub image feature is extracted based on Gaussian mixture model and gradient information.Then,according to feature similarity between sub images,the method which judges whether the sub image includes distractive information or not is proposed.Finally,vein image feature vector can be acquired through fusing the characteristics of all sub images with real vein information,and sparse representation algorithm is proposed to match the feature vector of unknown sample with diffe-rent effective dimensions.Experiments show that high recognition rate can be achieved by the proposed algorithm,and even though part of the region in vein image is blocked,good recognition effect can be also acquired.

Key words: Vein recognition,Gaussian mixture model,Sparse representation,Effective dimension

[1] Lin C-L,Fan K-C.Biometric verification using thermal images of palm-dorsa vein patterns[J].Transactions on Circuits and Systems for Video Technology,2004,14(2):199-213
[2] Li Tie-gang,Ma Si-liang,Zhang Zhong-bo,et al.Hand vein re-cognition method based on Bandelet Transformation[J].Journal of Jilin University(Science Edition),2007,45(6):975-978(in Chinese) 李铁钢,马驷良,张忠波,等.基于Bandelet变换的手背静脉识别算法[J].吉林大学学报(理学版),2007,45(6):975-978
[3] Liu Tie-gen,Wang Yun-xin,Li Xiu-yan,et al.Biometric recognition system based on hand vein pattern[J].Acta Optia Sinica,2009,29(12):3339-3343(in Chinese) 刘铁根,王云新,李秀艳,等.基于手背静脉的生物特征识别系统[J].光学学报,2009,29(12):3339-3343
[4] Han Wei-yu,Lee J C.Palm vein recognition using adaptive Gabor filter[J].Expert Systems with Applications,2012,39(18):13225-13234
[5] Hsu C B,Lee J C,Hao Shu-Sheng,et al.Dorsal hand vein recognition using Gabor feature-based 2-directional 2-dimensional principal component analysis[J].Advanced Science Letters,2012,8:813-817
[6] Wang Ran,Wang Guo-you,Chen Zhong,et al.A palm vein identification system based on Gabor wavelet features[J].Neural Computing and Applications,2014,24(1):161-168
[7] Sun Jun-wen,Abdulla W.Palm vein recognition by combiningCurvelet transform and Gabor filter:Biometric Recognition 8th Chinese Conference[M].Jinan:Springer International Publi-shing,2013:314-321
[8] Yang Jin-feng,Zhang Xu.Feature-level fusion of fingerprint andfinger-vein for personal identification[J].Pattern Recognition Letters,2012,33(5):623-628
[9] Meng Zhao-Hui,Gu Xiao-dong.Hand vein recognition using local block pattern[J].Electronics Letters,2013,49(25):1614-1615
[10] Ding Yu-hang,Zhuang Da-yan,Wang Ke-jun.A study of handvein recognition method:Proceedings of the IEEE International Conference on Mechatronics & Automation[C]∥Niagara Falls.IEEE,2005:2106-2110
[11] Wang Ling-Yu,Graham L,David S Y C.Minutiae feature analysis for infrared hand vein pattern biometrics[J].Pattern Recognition,2008,41(3):920-929
[12] Ajay K,Prathyusha K V.Personal authentication using handvein triangulation and knuckle shape[J].Transactions on Image Processing,2009,9(18):2127-2136
[13] Ding Yu-hang,Zhuang Da-yan,Wang Ke-jun.Hand vein recognition based on multi supplemental features of multi-classifier fusion decision[C]∥Proceedings of the IEEE International Conference on Mechatronics & Automation.Niagara Falls:IEEE,2006:1970-1975
[14] Zhang Yi-bo,Lin Qin,Jane You,et al.Palm vein extraction and matching for personal authentication[C]∥Advances in Visual information Systems 9th International Conference.Berlin:Springer Berlin Heidelberg,2007:154-164
[15] Wang Yi-ding,Liao Wei-ping.Hand vein recognition based onfeature coding[C]∥Proceedings of the 7th Chinese conference on Biometric Recognition.Guangzhou:Springer Berlin Heidelberg,2012:165-175
[16] Pflug A,Hartung D,Busch C.Feature extraction from vein images using spatial information and chain codes[J].Information Security Technical Report,2012,17(1/2):26-35
[17] Wu K S,Lee J C,Lo T M,et al.A secure palm vein recognition system[J].Journal of Systems and Software,2013,86(11):2870-2876
[18] Xiao Rong-yang,Yang Gong-ping,Yin Yi-long,et al.Modified Binary Pattern for Finger Vein Recognition[J].Biometric Re-cognition,2013,8232,258-265
[19] Hu Yun-peng,Wang Zhi-yong,Yang Xiao-ping,et al.Hand vein recognition based on the connection lines of reference point and feature point[J].Infrared Physics & Technology,2014,62(1):110-114
[20] 孙燮华.数字图像处理原理与算法[M].北京:机械工业出版社,2012:107-109
[21] Wang Chang-hu,Yan Shui-cheng,Zhang lei,et al.Multi-Label Sparse Coding for Automatic Image Annotation[C]∥Computer Vision and Pattern Recognition.Miami:IEEE,2009:1643-1650
[22] Yao Yuan,Liang Zhi-yi.Adaptive space orthogonal matchingpursuit algorithm for signal reconstruction based on compressive sensing[J].Computer Science,2012,39(10):50-53(in Chinese)姚远,梁志毅.基于压缩感知信号重建的自适应空间正交匹配追踪算法[J].计算机科学,2012,39(10):50-53
[23] Figueiredo M A T,Nowak R D,Wright S J.Gradient projection for sparse reconstruction:application to compressed sensing and other inverse problems[J].IEEE Journal of Selected Topics in Signal Processing,2007,1(4):586-597

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!