计算机科学 ›› 2016, Vol. 43 ›› Issue (Z11): 103-107.doi: 10.11896/j.issn.1002-137X.2016.11A.022

• 智能计算 • 上一篇    下一篇

一种带反向学习机制的自适应烟花爆炸算法

王立平,谢承旺   

  1. 萍乡学院信息与计算机工程学院 萍乡337055,广西师范学院科学计算与智能信息处理广西高校重点实验室 南宁530023
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金(11661065),江西省教育厅科技项目(GJJ151274),江西省知识产权软科学研究计划项目(ZR201610),科学计算与智能信息处理广西高校重点实验室(GXSCIIP201604)资助

Adaptive Fireworks Explosion Optimization Algorithm Using Opposition-based Learning

WANG Li-ping and XIE Cheng-wang   

  • Online:2018-12-01 Published:2018-12-01

摘要: 针对烟花爆炸算法全局优化能力不足、容易早熟收敛的缺陷,将反向学习机制引入其中,通过产生反向种群拓展算法的勘探范围;另外,基于种群内个体适应值的差异,提出一种自适应调整烟花弹爆炸半径的计算方法。以上策略有机结合形成了一种带反向学习机制的自适应烟花爆炸算法。将新算法与另4种代表性群智能优化算法一同在12个经典测试函数上进行对比实验,结果表明新算法具有显著的性能优势。

关键词: 反向学习,自适应爆炸半径,烟花爆炸算法

Abstract: Due to the insufficiency of the global optimization ability for the basic fireworks explosion algorithm (FEA for short),which results in the premature convergence of FEA easily.In the paper,a mechanism of opposition-based learning was introduced into the FEA to generate opposition-based population,which can expand the scope of exploration of the algorithm.In addition,an adaptive explosion radius was also assigned to the individual based on individual’s fitness value.The above two strategies are integrated into the FEA to form an adaptive fireworks explosion algorithm using opposition-based learning (AFEAOL).The AFEAOL is compared with other four swarm intelligence algorithms to validate the algorithm’s efficiency on twelve classic test instances,and the experimental results demonstrate that the AFEAOL algorithm has a significant performance advantage over other three peer algorithms.

Key words: Opposition-based learning,Adaptive explosion radius,Fireworks explosion algorithm

[1] Colorm A,Dorigo M,Manieaao V.Distributed optimization by ant colonies[C]∥Proceedings of the 1st European Conference on Artificial Life.Amsterdam,the Netherlands:Elsevier,1991:134-142
[2] Kennedy J,Eberhart R C.Particle swarm optimization[C]∥Proceedings of IEEE International Conference on Neural Networks.Piscataway: IEEE Press,1995:1942-1948
[3] Kirkpatrick S,Gelartt C D,Vecchi M P.Optimization by Simulated annealing[J].Science,1983,220(11):650-761
[4] Karaboga D,Basturk B.A powerful and efficient algorithm for numerical function optimization:Artificial bee colony (ABC) algorithm[J].Journal of Global Optimization,2007,39(3):459-471
[5] Tan Y,Zhu Y.Fireworks algorithms for optimization[C]∥Proceedings of International Conference on Swarm Intelligence.Piscataway:IEEE Press,2010:355-364
[6] 曹炬,贾红,李婷婷.烟花爆炸优化算法[J].计算机工程与科学,2011,33(1):138-142
[7] 曹炬,季艳芳.改进的烟花爆炸优化算法及其收敛性分析[J].计算机工程与科学,2012,34(1):90-93
[8] 曹炬,李婷婷,贾红.带有遗传算子的烟花爆炸优化算法[J].计算机工程,2010,36(23):149-151
[9] Zheng Y J,Xu X L,Ling H F,et al.A hybrid fireworks optimization menthod with differential evolution operators [J].Neurocomputing,2012(148):75-80
[10] Zheng S,Janecek A,Li J,et al.Dynamic search in fireworks Algorithm[C]∥2014 IEEE Congress on Evolutionary Computation.Beijing,China,2014:3222-3229
[11] Zhang B,Zhang M X,ZhengY J.A hybrid biogeography-based optimization and fireworks algorithm [C]∥2014 IEEE Congress on Evolutionary Computation.2014:3200-3206
[12] Tizhoosh H R.Opposition-based learning:A new scheme formachine intelligence[C]∥Proceedings of International Confe-rence on Computational Intelligence for Modeling Control and Automation.USA:IEEE,2005.695-701
[13] 周新宇,吴志健,王晖,等.一种精英反向学习的粒子群优化算法[J].电子学报,2013,41(8):1647-1652
[14] 新宇,吴志健,王明文.基于正交实验设计的人工蜂群算法[J].软件学报,2015,26(9):2167-2190
[15] Tang Ke,Li Xiao-dong,Suganthan P N,et al.Benchmark Functions for the CEC’s 2010 Special Session and Competition on Large-Scale Global Optimization[R].Hefei:Nature Inspired Computation and Applications Laboratory,USTC,2009

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!