计算机科学 ›› 2017, Vol. 44 ›› Issue (Z6): 70-74.doi: 10.11896/j.issn.1002-137X.2017.6A.014

• 智能计算 • 上一篇    下一篇

基于变精度和浓缩布尔矩阵的属性约简

李艳,郭娜娜,赵浩   

  1. 河北大学数学与信息科学学院机器学习与计算智能重点实验室 保定071002,河北大学数学与信息科学学院机器学习与计算智能重点实验室 保定071002,西安交通大学电子与信息工程学院 西安710049
  • 出版日期:2017-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金(61170040,61473111),河北省自然科学基金(F2014201100,A2014201003)资助

Attribute Reduction Based on Variable Precision Rough Sets and Concentration Boolean Matrix

LI Yan, GUO Na-na and ZHAO Hao   

  • Online:2017-12-01 Published:2018-12-01

摘要: 属性约简是粗糙集理论研究的重要内容。传统的基于差别矩阵的属性约简方法只能处理一致决策表,改进的差别矩阵针对决策表中一致和不一致的对象做不同的处理,从而解决了这一问题。浓缩布尔矩阵进一步节省了矩阵的存储空间并提高了矩阵的生成效率,从而可以快速计算得到约简。在此基础上,结合变精度的思想把部分不一致对象合理地加入到一致对象的集合中,从而增加了一致数据的信息量,并通过使用浓缩布尔矩阵有效降低了约简的计算消耗。实验表明,所提方法在运行速度和分类精度方面均表现出了优势。

关键词: 粗糙集,差别矩阵,属性约简,浓缩布尔矩阵,变精度

Abstract: Attribute reduction is the most important research topic in rough set theory.The traditional attribute reduction based on discer-nibility matrix can only handle consistent decision tables.Then the concept of improved discernibility matrix was proposed to effectively deal with both consistent and inconsistent decision tables.Further,the condensed Boolean matrix was defined to represent the discernibility matrix in order to save the storage space and improve the efficiency of matrix generation.Based on the previous work,the idea of variable precision was used to select some inconsistent objects in the developing of the discernibility matrix,thus more information can be considered in generating attri-bute reduction.The experimental results show that the proposed method performs advantages in both running speed and classification accuracy.

Key words: Rough set,Discernibility matrices,Attribute reduction,Concentration boolean matrix,Variable precision

[1] PAWLAK Z.Rough set[J].International Journal of Computer and Information Science,1982,1(5):341-356.
[2] WEI L,LI H R,ZHANG W X.Knowledge reduction based on the equivalence relations defined on attribute set and its power set[J].Information Sciences,2007,177(15):3178-3185.
[3] QIAN Y H,LIANG J Y,PEDRYCZ W.An efficient accelerator for attribute reduction from incomplete data in rough set framework[J].Pattern Recognition,2011,44:1658-1670.
[4] CHEN X,ZIARKO W.Experiments with rough set approach to face recognition[J].International Journal of Intelligent Systems,2011,26(6):499-517.
[5] ABBAS A,LIU J.Designing an intelligent recommender system using partial credit model and Bayesian rough set[J].International Arab Journal of Information Technology,2012,9(2):179-187.
[6] CHANG B,HUNG H.A study of using RST to create the supplier selection model and decision making rules[J].Expert Systems with Applications,2010,37(12):8284-8295.
[7] LIU D,YAO Y Y,LI T R.Three-way investment decisions with decision-theoretic rough sets[J].International Journal of Computational Intelligence Systems,2011,4(1):66-74.
[8] 刘清.Rough集及Rough推理[M].北京:科学出版社,2001.
[9] JELONEK J,KRAWIEC K,SLOWINSKI R.Rough set reduction of attributes and their domains for neural networks[J].Computational Intelligence,1995,1(2):339-347.
[10] WANG J,WANG J.Reduction algorithm based on discernibility matrix the ordered attributes method[J].Journal of Computer Science and Technology,2001,6(6):489-504.
[11] 王治和,崔晓慧.改进的差别矩阵启发式属性约减算法[J].计算机工程与设计,2016,37(4):1032-1036.
[12] SKOWRONA,RAUSZER C.The discernibility matrices andfunctions in information systems [M].Dordrecht:Kluwer Academic Publishers,1992:331-362.
[13] 王国胤.Rough集理论与知识获取[M].西安:西安交通大学出版社,2001:30-62.
[14] 杨明,杨萍.差别矩阵浓缩及其属性约简求解方法[J].计算机科学,2006,33(9):181-183.
[15] 殷志伟,张健沛.基于浓缩布尔矩阵的属性约简算法[J].哈尔滨工程大学学报,2009,0(3):307-311.
[16] CHEN D G,YANG Y Y,DONG Z.An incremental algorithm for attribute reduction with variable precision rough sets[J].Applied Soft Computing,2016,45:129-149.
[17] JAMES N,LIU K,HU Y X ,et al.A set covering based approach to find the reduct of variable precision rough set[J].Information Sciences,2014,275(3):83-100.
[18] 黄卫华,晏林,冯云再.广义变精度粗糙集模型与其它粗糙集模型的比较[J].兰州文理学院学报,2015,29(5):6-8.
[19] 杨勇,朱影.一种基于MapReduce的粗糙集并行属性约简算法[J].重庆邮电大学学报,2015,27(1):90-96.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!