计算机科学 ›› 2018, Vol. 45 ›› Issue (2): 94-97.doi: 10.11896/j.issn.1002-137X.2018.02.016

• 2017年中国计算机学会人工智能会议 • 上一篇    下一篇

一种基于差异系数的稀疏度自适应图像去噪算法

焦莉娟,王文剑   

  1. 忻州师范学院计算机系 山西 忻州034000,山西大学计算机与信息技术学院 太原030006
  • 出版日期:2018-02-15 发布日期:2018-11-13
  • 基金资助:
    本文受国家自然科学基金(61673249,1),山西省回国留学人员科研资助

Sparsity-adaptive Image Denoising Algorithm Based on Difference Coefficient

JIAO Li-juan and WANG Wen-jian   

  • Online:2018-02-15 Published:2018-11-13

摘要: 基于压缩感知的K-means Singular Value Decomposition(K-SVD)图像去噪算法具有良好的自适应性和细节恢复能力,但需事先给定稀疏度K。 该方法的去噪效果会受到图像稀疏度的影响。另外,训练初始系数时用到的追踪类算法中通过向量内积值的大小评定图像分量间相关度的方法,因存在大值噪声点,容易造成假相关,从而影响去噪效果。提出基于差异系数的稀疏度自适应K-SVD去噪算法,通过引入差异系数来平衡因噪声点造成的假相关问题,同时使用相关度均值作为阈值来自适应地产生稀疏度K,避免因给定不恰当的稀疏度而影响去噪效果的问题。在USC标准库上的实验结果表明,所提算法在去噪效果方面有一定的优越性。

关键词: 图像去噪,K奇异值分解,稀疏度自适应,差异系数

Abstract: With the remarkable adaptability and the details recovery capability,K-SVD is a highly effective method based on sparse representation theory in image denoising.But the sparsity K should be given in advance,and different images have different K values in fact.On the other hand,pursuit algorithms which are used in evaluating the relevance between vectors of an image by calculating vector inner product,are brought into K-SVD to train sparse coefficients.Denoising effect is reduced because a few noisy pixels are likely to cause false relevance.This paper addressed this problem and proposed a novel sparsity-adaptive speeded K-SVD(SASK-SVD) algorithm based on different coefficient,which can improve the efficiency.The different coefficient is to eliminate false relevance.The sparsity K is adaptively generated by using the average correlation as the threshold.This study conducted extensive experiments to demonstrate these ideas.The experimental results show that the proposed method achieves the state-of-the-art denoising performance.

Key words: Image denoising,K-means singular value decomposition,Sparsity-adaptive,Difference coefficient

[1] YUAN S Q,TAN Y H.Difference-type noise detector for adaptive median filter[J].IEEE lectronics Letters,2006,42(8):454-455.
[2] MAGGIONI M,KATKOVNIK V,EGIAZARIAN K.Nonlocal transform-domain filter for volumetric data denoising and reconstruction [J].IEEE Transactions on Image Processing,2013,22(1):119-133.
[3] DONOHO D L.Compressed sensing[J].IEEE Transaction on Information Theory,2006,52(4):1289-1306.
[4] ELAD M,AHARON M.Image denoising via sparse and redundant representations over learned dictionaries [J].IEEE Tran-sactions on Image Processing,2006,15(12):3736-3745.
[5] LIU Q,ZHANG C,GUO Q,et al.Adaptive sparse coding on PCA dictionary for image denoising[J].The Visual Computer,2016,32(4):535-549.
[6] AHARON M,ELAD M,BRUCKSTEIN A.K-SVD:an algo-rithm for designing overcomplete dictionaries for sparse representation [J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322.
[7] ROMANO Y,ELAD M.Improving K-SVD denoise by post-processing its method-noise[C]∥Proceedings of International Conference on Image Processing.2013:435-439.
[8] RAJA H,BAJWA W U.Cloud K-SVD:A Collaborative Dictiona-ry Learning Algorithm for Big,Distributed Data[J].IEEE Transactions on Signal Processing,2016,4(1):173-188.
[9] JIAO L J,WANG W J.A Speeded-up K-SVD Image Denoising Algorithm[J].Mini-Micro Systems,2016,37(7):1608-1612.(in Chinese) 焦莉娟,王文剑.一种快速的K-SVD图像去噪方法[J].小型微型计算机系统,2016,37(7):1608-1612.
[10] TROPP J,GILBERT A.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transaction on Information Theory,2007,3(12):4655-4666.
[11] MALLAT S,ZHANG Z.Matching pursuits with time frequency dictionaries[J].IEEE Transactions on Signal Processing,1993,1(12):3397-3415.
[12] NEEDELL D,VERSHYNIN R.Uniform uncertainty principleand signal recovery via regularized orthogonal matching pursuit[J].Foundations of Computational Mathematics,2009,9(3):317-334.
[13] DO T T,GAN L,NGUYEN N,et al.Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]∥IEEE 42nd Asilomar Conference on Signals,Systems and Computers.2008:581-587.
[14] NEEDELL D,TROPP J A.CoSaMP:Iterative signal recovery from incomplete and inaccurate samples[J].Applied and Computational Harmonic Analysis,2009,26(3):301-321.
[15] DONOHO D L,TSAIG Y,DRORI I,et al.Sparse solution ofunderdetermined systems of linear equations by stagewise orthogonal matching pursuit[J].IEEE Transactions on Information Theory,2012,8(2):1094-1121.
[16] KWON S,WANG J,SHIM B.Multipath matching pursuit[J].IEEE Transactions on Information Theory,2014,60(5):2986-3001.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .