计算机科学 ›› 2018, Vol. 45 ›› Issue (8): 17-21.doi: 10.11896/j.issn.1002-137X.2018.08.004
李云波1, 唐斯琪1, 周星宇2, 潘志松1
LI Yun-bo1, TANG Si-qi1, ZHOU Xing-yu2, PAN Zhi-song1
摘要: 本文目标是根据任意视角、任意人群密度的图像信息,估计真实场景中的人群密度。但三维空间景物投影到二维空间时会造成透视失真和人群遮挡问题,导致难以区分个体与个体、个体与背景的差异。为此,提出一种灵活高效的可伸缩模块化卷积神经网络(CNN)的架构,允许直接输入任意大小和分辨率的图像,不额外计算视角变化信息,通过生成密度图的方式来估计人群数量。架构的每个模块采用不同卷积核的多列结构,可以拟合不同远近的个体信息;并结合前后两层的特征信息,减少了梯度消失造成的精度下降损失。实验证明,在ShanghaiTech PartA和PartB数据集上,所提方法的准确率比之前最好的MCNN方法分别提高了14.58%,40.53%,均方根误差分别降低了23.89%,33.90%。
中图分类号:
[1]LIN S F,CHEN J Y,CHAO H X.Estimation of number of people in crowded scenes using perspective transformation[J].IEEE Transactions on Systems,Man & Cybernetics Part A Systems & Humans,2001,31(6):645-654. [2]DALAL N,TRIGGS B.Histograms of Oriented Gradients for Human Detection[C]∥IEEE Computer Society Conference on Computer Vision & Pattern Recognition.IEEE Computer Society,2005:886-893. [3]WANG M,WANG X.Automatic adaptation of a generic pedestrian detector to a specific traffic scene[C]∥IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2011:3401-3408. [4]GE W,COLLINS R T.Marked point processes for crowd-coun-ting[C]∥IEEE Conference on Computer Vision and Pattern Recognition,2009(CVPR 2009).IEEE,2009:2913-2920. [5]IDREES H,SOOMRO K,SHAH M.Detecting Humans inDense Crowds Using Locally-Consistent Scale Prior and Global Occlusion Reasoning[M].IEEE Computer Society,2015. [6]LIN Z,DAVIS L S.Shape-Based Human Detection and Segmentation via Hierarchical Part-Template Matching[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2010,32(4):604-618. [7]LEMPITSKY V S,ZISSERMAN A.Learning To Count Objects in Images[C]∥International Conference on Neural Information Processing Systems.Curran Associates Inc.,2010:1324-1332. [8]ZHANG C,LI H,WANG X,et al.Cross-scene crowd counting via deep convolutional neural networks[C]∥IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2015:833-841. [9]WANG C,ZHANG H,YANG L,et al.Deep People Counting in Extremely Dense Crowds[C]∥ACM International Conference on Multimedia.ACM,2015:1299-1302. [10]BOOMINATHAN L,KRUTHIVENTI S S S,BABU R V.CrowdNet:A Deep Convolutional Network for Dense Crowd Counting[C]∥Proceedings of ACM Conference on Multimedia (ACMMM) - 2016.2016:640-644. [11]ZHANG Y,ZHOU D,CHEN S,et al.Single-Image CrowdCounting via Multi-Column Convolutional Neural Network[C]∥Computer Vision and Pattern Recognition.IEEE,2016:589-597. [12]HAN S,POOL J,TRAN J,et al.Learning both Weights and Connections for Efficient Neural Networks[C]∥NIPS 2015.2015:1135-1143. [13]HAN S,LIU X,MAO H,et al.EIE:Efficient Inference Engine on Compressed Deep Neural Network[C]∥ACM/IEEE International Symposium on Computer Architecture.IEEE,2016:243-254. [14]HAN S,MAO H,DALLY W J.Deep Compression:Compressing Deep Neural Networks with Pruning,Trained Quantization and Huffman Coding[J].Fiber,2015,56(4):3-7. [15]LIN M,CHEN Q,YAN S.Network In Network[C]∥International Conference on Learning Representations.2013. [16]NAIR V,HINTON G E.Rectified linear units improve restric-ted boltzmann machines[C]∥International Conference on International Conference on Machine Learning.Omnipress,2010:807-814. [17]HE K,ZHANG X,REN S,et al.Deep Residual Learning for Ima-ge Recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2016:770-778. [18]RODRIGUEZ M,LAPTEV I,SIVIC J,et al.Density-aware person detection and tracking in crowds[C]∥International Confe-rence on Computer Vision.IEEE Computer Society,2011:2423-2430. [19]IDREES H,SALEEMI I,SEIBERT C,et al.Multi-source Multi-scale Counting in Extremely Dense Crowd Images[C]∥IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2013:2547-2554. [20]OÑORO-RUBIO D,LÓPEZ-SASTRE R J.Towards Perspec-tive-Free Object Counting with Deep Learning[C]∥European Conference on Computer Vision.Springer,Cham,2016:615-629. |
[1] | 黄颖琦, 陈红梅. 基于代价敏感卷积神经网络的非平衡问题混合方法[J]. 计算机科学, 2021, 48(9): 77-85. |
[2] | 徐涛, 田崇阳, 刘才华. 基于深度学习的人群异常行为检测综述[J]. 计算机科学, 2021, 48(9): 125-134. |
[3] | 赫晓慧, 邱芳冰, 程淅杰, 田智慧, 周广胜. 基于边缘特征融合的高分影像建筑物目标检测[J]. 计算机科学, 2021, 48(9): 140-145. |
[4] | 张新峰, 宋博. 一种基于改进三元组损失和特征融合的行人重识别方法[J]. 计算机科学, 2021, 48(9): 146-152. |
[5] | 王乐, 杨晓敏. 基于感知损失的遥感图像全色锐化反馈网络[J]. 计算机科学, 2021, 48(8): 91-98. |
[6] | 叶中玉, 吴梦麟. 融合时序监督和注意力机制的脉络膜新生血管分割[J]. 计算机科学, 2021, 48(8): 118-124. |
[7] | 王施云, 杨帆. 基于U-Net特征融合优化策略的遥感影像语义分割方法[J]. 计算机科学, 2021, 48(8): 162-168. |
[8] | 王炽, 常俊. 基于3D卷积神经网络的CSI跨场景手势识别方法[J]. 计算机科学, 2021, 48(8): 322-327. |
[9] | 程松盛, 潘金山. 基于深度学习特征匹配的视频超分辨率方法[J]. 计算机科学, 2021, 48(7): 184-189. |
[10] | 王栋, 周大可, 黄有达, 杨欣. 基于多尺度多粒度特征的行人重识别[J]. 计算机科学, 2021, 48(7): 238-244. |
[11] | 熊朝阳, 王婷. 基于卷积神经网络的建筑构件图像识别[J]. 计算机科学, 2021, 48(6A): 51-56. |
[12] | 胡京徽, 许鹏. 一种基于图像分类的航空紧固件产品自动分类方法[J]. 计算机科学, 2021, 48(6A): 63-66. |
[13] | 和青芳, 王慧, 程光. 自适应小数据集乳腺癌病理组织分类研究[J]. 计算机科学, 2021, 48(6A): 67-73. |
[14] | 张曼, 李杰, 朱新忠, 沈霁, 成昊天. 基于改进DCGAN算法的遥感数据集增广方法[J]. 计算机科学, 2021, 48(6A): 80-84. |
[15] | 徐少伟, 秦品乐, 曾建朝, 赵致楷, 高媛, 王丽芳. 基于多级特征和全局上下文的纵膈淋巴结分割算法[J]. 计算机科学, 2021, 48(6A): 95-100. |
|