计算机科学 ›› 2019, Vol. 46 ›› Issue (11): 58-64.doi: 10.11896/jsjkx.181001865

• 网络与通信 • 上一篇    下一篇

基于跳频的认知无线电网络中的时隙优化策略

吉毅1,2, 贾俊铖1,2,3, 盛凯4   

  1. (苏州大学计算机科学与技术学院 江苏 苏州215006)1
    (苏州大学计算机信息处理技术省级重点实验室 江苏 苏州215006)2
    (新型软件技术与产业化协同创新中心 南京210000)3
    (苏州大学能源研究实验室 江苏 苏州215006)4
  • 收稿日期:2018-10-08 出版日期:2019-11-15 发布日期:2019-11-14
  • 通讯作者: 贾俊铖(1983-),男,博士,副教授,主要研究方向为无线认知网络、大数据应用与机器学习,E-mail:jiajuncheng@suda.edu.cn
  • 作者简介:吉毅(1993-),男,硕士生,主要研究方向为高性能计算、社交网络、认知无线电网络;盛凯(1985-),男,硕士,主要研究方向为大数据应用。
  • 基金资助:
    本文受国家自然科学基金项目(61672370,61502328),中国博士后科学基金资助项目(2017M611905),江苏省高等学校自然科学研究面上资助经费项目(17KJB520034),苏州市产业技术创新专项(民生科技)项目(SS201701)资助。

Time Slot Optimization for Channel Hopping in CRN

JI Yi1,2, JIA Jun-cheng1,2,3, SHENG Kai4   

  1. (School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215006,China)1
    (Provincial Key Laboratory for Computer Information Processing Technology,Soochow University,Suzhou,Jiangsu 215006,China)2
    (Collaborative Innovation Center of Novel Software Technology and Industrialization,Nanjing 210000,China)3
    (Energy Research Laboratory,Soochow University,Suzhou,Jiangsu 215006,China)4
  • Received:2018-10-08 Online:2019-11-15 Published:2019-11-14

摘要: 随着近几年无线通信技术的快速发展,无线电频谱资源越来越匮乏。认知无线电网络(CRN)由于可提高现有频谱资源的利用率,受到了广泛关注。针对传统的认知无线电网络中随机跳频交汇策略没有考虑信道碰撞和切换延迟的问题,提出了一种基于时隙ALOHA协议,融入了切换延迟的最优随机跳频交汇策略。首先,将整个交汇过程以时隙微分化,定义信道时长和切换时长时隙模型,并将跳频过程与ALOHA协议融合,给出策略交汇时长(TTR)的计算方法;然后,分步骤详细分析交汇策略的流程,根据联合概率推导出时隙期望关于信道数目、切换时延的公式;最后,根据求导和函数趋势图计算最低点,进而提出一种基于整数规化的时隙最优数目计算算法,以取得整体交汇策略的最优化。通过模拟实验考查了可用时隙数目和切换时延这两个重要参数,实验结果表明切换时延比可用信道数目对交汇效率的影响更大。此外,实验结果还表明:该策略在充分考虑时延的同时,总能以最优方式交汇,相比传统方式可大幅度地缩短平均交汇时间(ATTR),当时延的时隙数目不大于5时,ATTR整体上缩短了15%左右,这可促进节点快速交汇,进而加速节点信息交互,进一步提高现有频谱的利用率。

关键词: 认知无线电网络, 交汇策略, 跳频交汇, 时隙优化

Abstract: With the rapid development of wireless communication technology in recent years,radio spectrum resources are becoming scarcer.Cognitive radio networks (CRNs) attracts widespread attention because they can improve the utilization of existing spectrum resources.For the issue that the traditional random channel hopping rendezvous strategy of cognitive radio network do not considere the channel collision and switching delay,this paper proposed an optimal random channel hopping rendezvous strategy based on time slot ALOHA protocol with calculation of switching delay.Firstly,the proposed strategy differentiates the whole process in time slot,defines the model about time slot of channel staying and switching delay,integrates the channel hopping process with ALOHA protocol,and gives the calculation formula of time-to-rendezvous (TTR).Then,by analyzing the process of rendezvous strategy step by step,it derives the formula of time slot expectation for available channel number and switching delay based on joint probability.Finally,it calculates the lowest point according to the derivative and the trend graph of the function.And then according to the idea of integer programming,this paper proposed an algorithm for calculating the optimal number of slots to optimize the overall rendezvous strategy.The experiment was carried out under the control of the number of available slots and switching delay.The experimental results show that the effect of switching delay on the rendezvous efficiency is greater than that of channel number.Also,the proposed scheme can achieve rendezvous in an optimal way with full account of the switching delay.It also can reduce the total rendezvous time effectively than the traditional strategy.When the number of time slots of switching delay is not more than 5,the ATTR is generally reduced by about 15%,which can promote the rendezvous and accelerate the message exchange between nodes and futher improve the spectrum utilization.

Key words: Cognitive radio network, Rendezvous strategy, Channel hopping, Time slot optimization

中图分类号: 

  • TP393.1
[1] LIU Q,ZHAO G S,WANG X D,et al.A Survey of ChannelRendezvous in Cognitive Radio Networks[J].Chinese Journal of Software,2014,25(3):606-630.(in Chinese)刘权,赵光胜,王晓东,等.认知无线电网络信道交汇研究综述[J].软件学报,2014,25(3):606-630.
[2] ZHANG X,LIU C,HU S,et al.Centralized spectrum allocation strategy based on Queuing Theory in cognitive radio networks[J].Chinese Application Research of Computers,2015,32(1):187-190.(in Chinese)张旭,刘聪,胡胜,等.认知无线电网络中基于排队论的集中式频谱分配策略[J].计算机应用研究,2015,32(1):187-190.
[3] THEIS N C,THOMAS R W,DASILVA L A.Rendezvous for cognitive radios[J].IEEE TransActions on Mobile Computing,2011,10(2):216-227.
[4] JIA J C,QIAN Z.Rendezvous protocols based on message passing in cognitive radio networks[J].IEEE Transactions on Wireless Communications,2013,12(11):5594-5606.
[5] ROBERTSON A,LAN T,MOLNAR J,et al.Experimentalcomparison of blind rendezvous algorithms for tactical networks[C]∥IEEE International Symposium on A World of Wireless,Mobile and Multimedia Networks.IEEE Computer Society,2012:1-6.
[6] CHANG G Y,TENG W H,CHEN H Y,et al.Novel Channel-Hopping Schemes for Cognitive Radio Networks[J].IEEE Transactions on Mobile Computing,2014,13(2):407-421.
[7] LIU H,LIN Z,CHU X,et al.Ring-Walk Based ChannelHopping Algorithms with Guaranteed Rendezvous for Cognitive Radio Networks[C]∥Ieee/acm Int’l Conference on Green Computing and Communications & Int’l Conference on Cyber,Physical and Social Computing.IEEE Computer Society,2010:755-760.
[8] SHIN J,YANG D,KIM C.A channel rendezvous scheme for cognitive radio networks[J].IEEE Communications Letters,2010,14(10):954-956.
[9] LIN Z,LIU H,CHU X,et al.Jump-stay based channel-hopping algorithm with guaranteed rendezvous for cognitive radio networks[C]∥INFOCOM,2011 Proceedings IEEE.IEEE,2011:2444-2452.
[10] ZHANG Y,LI Q,YU G,et al.ETCH:Efficient ChannelHopping for communication rendezvous in dynamic spectrum access networks[C]∥IEEE INFOCOM.IEEE,2011:2471-2479.
[11] YU L,LIU H,LEUNG Y W,et al.Adjustable rendezvous in multi-radio cognitive radio networks[C]∥Global Communications Conference (GLOBECOM),2015 IEEE.IEEE,2015:1-7.
[12] GÖZÜPEK D,BUHARI S,ALAGÖZ F.A Spectrum Switching Delay-Aware Scheduling Algorithm for Centralized Cognitive Radio Networks[J].IEEE Transactions on Mobile Computing,2013,12(7):1270-1280.
[13] ERYIGIT S,BAYHAN S,TUGCU T.Channel switching costaware and energy-efficient cooperative sensing scheduling for cognitive radio networks[C]∥IEEE International Conference on Communications.IEEE,2013:2633-2638.
[14] SCHOUTE F C.Dynamic Frame Length ALOHA[J].Mobile Communications,1983,31(4):565-568.
[15] SHEU J P,LIN J J.A Multi-Radio Rendezvous AlgorithmBased on Chinese Remainder Theorem in Heterogeneous Cognitive Radio Networks[J].IEEE Transactions on Mobile Computing,2018,PP(99):1-1.
[16] XU D,GAO Y,YANG C,et al.Performance Analysis of Opportunistic Cooperation Schemes in Cognitive Radio Networks[J].IEEE Transactions on Vehicular Technology,2018,67(4):3658-3662.
[17] XIN C S,ULLAH S,SONG M,et al.Throughput oriented lightweight near-optimal rendezvous algorithm for cognitive radio networks[J].Computer Networks,2018,137:49-60.
[18] LI J,ZHAO H,WEI J,et al.Sender-Jump Receiver-Wait:a simple blind rendezvous algorithm for distributed cognitive radio networks[J].IEEE Transactions on Mobile Computing,2018,17(1):183-196.
[19] AKYILDIZ I F,LEE W Y,VURAN M C,et al.A survey on spectrum management in cognitive radio networks[J].IEEE Communications Magazine,2008,46(4):40-48.
[1] 孙卫,黄金科. 基于QoS的分布式认知无线电网络多信道MAC协议[J]. 计算机科学, 2017, 44(Z6): 288-293.
[2] 韩杰,宋晓勤,董莉,金慧. 一种基于OFDM认知无线电网络的次优动态资源分配算法[J]. 计算机科学, 2017, 44(5): 48-52.
[3] 汤璘,刘俊霞,赵丽,齐兴斌. 基于M&S模型的分布式认知无线电网络时间同步机制[J]. 计算机科学, 2017, 44(12): 64-67.
[4] 杨劲松,曾碧卿,胡翩翩. 认知无线电网络中基于和声搜索的频谱分配与功率控制[J]. 计算机科学, 2015, 42(Z11): 258-262.
[5] 王振朝,马明磊,李 延. 基于SC-FDMA的宽带认知无线电网络中最优功率分配的研究[J]. 计算机科学, 2015, 42(4): 56-59.
[6] 薛楠,周贤伟,林琳,周健. 基于最短时延的认知无线电网络安全路由算法[J]. 计算机科学, 2010, 37(1): 68-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .