计算机科学 ›› 2019, Vol. 46 ›› Issue (12): 120-125.doi: 10.11896/jsjkx.181202381
王哲, 郑嘉利, 李丽, 袁源, 石静
WANG Zhe, ZHENG Jia-li, LI Li, YUAN Yuan, SHI Jing
摘要: 随着室内定位技术的飞速发展,射频识别(Radio Frequency Identification,RFID)技术以其非接触、快速识别等优点成为解决问题的首选方案。针对目前室内定位算法的精度容易受到标签密度和算法效率的影响及对动态环境适应性不足的问题,文中提出了一种蝗虫群优化(Grasshopper Optimization Algorithm,GOA)和极限学习机(Extreme Learning Machine,ELM)相结合的RFID室内定位算法。该算法通过蝗虫群优化对极限学习机随机产生的输入层权值和隐含层阈值进行选择,以提升极限学习机的性能,从而在离线阶段减少学习时间;利用蝗虫群算法对极限学习机参数进行优化,有效克服环境以及信号强度值变化对定位精度的影响。通过实验研究了影响算法性能的因素,并验证了算法的有效性。与BP神经网络算法(NN-Based)和非度量多维尺度算法(NMDS-RFID)相比,所提算法的定位平均误差分别降低了22.32%和20.06%,平均执行时间分别减少了58.7%和7.55%。仿真和实验结果表明,所提算法在获得更精确的定位结果的同时降低了时间成本,并对环境变化具有较好的适应性。
中图分类号:
[1] | POTGANTWAR A D,WADHAI V M.Improved Indoor Positioning Using RSS and Directional Antenna Integrating with RFID and Wireless Technology[C]//Proceedings of International Conference on ICT for Sustainable Development.Singapore:Springer,2016:319-328. |
[2] | SHEN G H,MA Y T,LIU K H,et al.An indoor RFID tag localization algorithm in NLOS environment[J].Computer Engineering and Science,2016,38(3):454-459.(in Chinese)沈郭浩,马永涛,刘开华,等.非视距环境下室内RFID标签定位算法研究[J].计算机工程与科学,2016,38(3):454-459. |
[3] | TOMIC S,BEKO M.Exact Robust Solution to TW-ToA-Based Target Localization Problem With Clock Imperfections[J].IEEE Signal Processing Letters,2018,25(4):531-535. |
[4] | AI Z,LIU Y.Research on the TDOA Measurement of Active RF1D Real Time Location System[C]//IEEE International Conference on Computer Science & Information Technology.IEEE,2010:410-412. |
[5] | AZZOUZI S,CREMER M,DETTMAR U,et al.New measurement results for the localization of UHF RFID transponders using an Angle of Arrival (AoA) approach[C]//IEEE International Conference on Rfid.IEEE,2011:91-97. |
[6] | SONG X,LI X,TANG W,et al.A hybrid positioning strategy for vehicles in a tunnel based on RFID and in-vehicle sensors[J].Sensors,2014,14(12):23095-23118. |
[7] | XU K,LIU H L.Characteristics of path loss for wireless sensor networks in indoor environments[J].Transducer and Microsystem Technologies,2016,35(12):11-13.(in Chinese)徐琨,刘宏立.室内环境下无线传感网络路径衰减特性[J].传感器与微系统,2016,35(12):11-13. |
[8] | ZHANG X Q,FANG F,YING K Z,et al.Design and Implement of an Interpolation Indoor Fingerprint-Based Localization System[J].Chinese Journal of Sensors and Actuators,2017,30(4):596-602.(in Chinese)章晓强,方飞,应可珍,等.一种基于插值的室内指纹定位系统设计与实现[J].传感技术学报,2017,30(4):596-602. |
[9] | TANG Y,BAI Y,MA Y,et al.Research of WiFi-based Fingerprinting Matching Algorithm in Indoor Positioning[J].ComputerScience,2016,43(5):73-75.(in Chinese)唐洋,白勇,马跃,等.基于WiFi的指纹匹配算法在室内定位中的应用研究[J].计算机科学,2016,43(5):73-75. |
[10] | GAO Z,MA Y,LIU K,et al.An Indoor Multi-tag Cooperative Localization Algorithm Based on NMDS for RFID[J].IEEE Sensors Journal,2017,17(7):2120-2128. |
[11] | KUNG H Y,CHAISIT S,PHUONG N T M.Optimization of an RFID location identification scheme based on the neural network[J].International Journal of Communication Systems,2015,28(4):625-644. |
[12] | DWIYASA F,LIM M H.Extreme Learning Machine for Active RFID Location Classification[C]//Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems.Springer International Publishing,2015:657-670. |
[13] | ZHU Q Y,QIN A K,SUGANTHAN P N,et al.Evolutionary extreme learning machine[J].Pattern Recognition,2005,38(10):1759-1763. |
[14] | CAO J,LIN Z,HUANG G B.Self-Adaptive Evolutionary Extreme Learning Machine[J].Neural Processing Letters,2012,36(3):285-305. |
[15] | ABDELGAYED T S,MORSI W G,SIDHU T S.Fault Detection and Classification based on Co-Training of Semi-Supervised Machine Learning[J].IEEE Transactions on Industrial Electroni-cs,2017,PP(99):1-1. |
[16] | HAN F,YAO H F,LING Q H.An improved evolutionary extreme learning machine based on particle swarm optimization[J].Neurocomputing,2013,116(1):87-93. |
[17] | DONG H B,LI D M,ZHANG X P.Particle Swarm Optimization Algorithm with Dynamically Adjusting Inertia Weight[J].Computer Science,2018,45(2):98-102.(in Chinese)董红斌,李冬锦,张小平.一种动态调整惯性权重的粒子群优化算法[J].计算机科学,2018,45(2):98-102. |
[18] | SAREMI S,MIRJALILI S,LEWIS A.Grasshopper Optimisation Algorithm:Theory and application[J].Advances in Engineering Software,2017,105(4):30-47. |
[1] | 全艺璇, 郑嘉利, 罗文聪, 林子涵, 谢孝德. 基于改进型灰狼算法的RFID网络规划[J]. 计算机科学, 2021, 48(1): 253-257. |
[2] | 徐鹤, 吴满星, 李鹏. 基于ARIMA模型的RFID室内相对位置定位算法[J]. 计算机科学, 2020, 47(9): 252-257. |
[3] | 李丽,郑嘉利,王哲,袁源,石静. 基于异步优势动作评价的RFID室内定位算法[J]. 计算机科学, 2020, 47(2): 233-238. |
[4] | 王红星, 陈玉权, 沈杰, 张欣, 黄祥, 于滨. 一种新型半监督极限学习机及其在防震锤锈蚀检测中的应用[J]. 计算机科学, 2020, 47(12): 262-266. |
[5] | 王文博, 黄璞, 杨章静. 基于超宽带、里程计、RGB-D融合的室内定位方法[J]. 计算机科学, 2020, 47(11A): 334-338. |
[6] | 翟书颖, 李茹, 李波, 郝少阳. 视觉群智感知应用综述[J]. 计算机科学, 2019, 46(6A): 11-15. |
[7] | 袁源, 郑嘉利, 石静, 王哲, 李丽. 基于Q-learning的RFID多阅读器防碰撞算法[J]. 计算机科学, 2019, 46(6): 124-127. |
[8] | 冯安琪, 钱丽萍, 黄玉蘋, 吴远. RFID环境下基于自适应卡尔曼滤波的高速移动车辆速度预测[J]. 计算机科学, 2019, 46(4): 100-105. |
[9] | 石静, 郑嘉利, 袁源, 王哲, 李丽. 基于Whittle索引的RFID多阅读器信道资源分配算法[J]. 计算机科学, 2019, 46(10): 122-127. |
[10] | 李栋, 薛惠锋. 基于混合模型的中长期降水量预测[J]. 计算机科学, 2018, 45(9): 271-278. |
[11] | 翁理国,孔维斌,夏旻,仇学飞. 基于深度极限学习机的卫星云图云量计算[J]. 计算机科学, 2018, 45(4): 227-232. |
[12] | 卢涛,管英杰,潘兰兰,张彦铎. 基于低秩约束的极限学习机高效人脸识别算法[J]. 计算机科学, 2018, 45(3): 294-299. |
[13] | 甘勇, 王凯, 贺蕾. 一种全新的RFID标签所有权转移协议[J]. 计算机科学, 2018, 45(11A): 369-372. |
[14] | 陈丽芳, 代琪, 付其峰. 基于粒计算的极限学习机模型设计与应用[J]. 计算机科学, 2018, 45(10): 59-63. |
[15] | 夏俊, 刘军发, 蒋鑫龙, 陈益强. 针对设备差异性问题的增量式室内定位方法[J]. 计算机科学, 2018, 45(10): 69-77. |
|