计算机科学 ›› 2020, Vol. 47 ›› Issue (11A): 628-631.doi: 10.11896/jsjkx.190600163

• 交叉&应用 • 上一篇    下一篇

SFRA方法在交流伺服系统中的应用研究

李兴国1, 任益枚1, 田竞2, 唐竟淇2   

  1. 1 四川大学信息管理中心 成都 610065
    2 四川雷得兴业信息科技有限公司 成都 610023
  • 出版日期:2020-11-15 发布日期:2020-11-17
  • 通讯作者: 任益枚(497914760@qq.com)
  • 作者简介:mygdb7163.com
  • 基金资助:
    中国高等教育学会2016年度教育信息化专项重点课题(2016XXZD05)

Application of SFRA Method in AC Servo System

LI Xing-guo1, REN Yi-mei1, TIAN Jing2, TANG Jing-qi2   

  1. 1 Information Management Center,Sichuan University,Chengdu 610065,China
    2 Sichuan LEAD Industrial Information Technology Co.,Ltd.,Chengdu 610023,China
  • Online:2020-11-15 Published:2020-11-17
  • About author:LI Xing-guo,born in 1971,is a member of China Computer Federation,senior engineer,doctoral student.His main research interests include network and information security,big data and cloud computing and university informatio-nization.
    REN Yi-mei,born in 1982,postgraduate,intermediate engineer.Her main research interests include computer application and so on.
  • Supported by:
    This work was supported by the 2016 Education Information Project of China Higher Education Association(2016XXZD05).

摘要: TI公司为了提高数字电源的开发效率,专门开发了针对C2000系列处理器的软件频率响应分析器(Software Frequency Response Analyzer,SFRA)工具,用于测试数字电源的频率特性。文中在分析SFRA原理的基础上,结合交流伺服系统的应用需求,将SFRA应用于交流伺服系统的频率特性测试。实验结果表明,SFRA方法同样可用于交流伺服系统中,一方面节省了系统的成本,另一方面拓展了该方法的应用场景,具备积极的研究价值。

关键词: SFRA, 交流伺服系统, 频率特性测试, 频域辨识

Abstract: In order to improve the development efficiency of digital power supplies,TI has developed a software frequency response analyzer (SFRA) tool for C2000 series processors to test the frequency characteristics of digital power supplies.Based on the analysis of the SFRA principle and the application requirements of AC servo system,in this paper,SFRA is applied to the frequency characteristic test of AC servo system.Experimental results show that the SFRA method can also be used in the AC servo system.On the one hand,it saves the cost of the system.On the other hand,it expands the application scenario of the method and has positive research value.

Key words: AC servo system, Frequency characteristic test, Frequency domain identification, SFRA

中图分类号: 

  • TP3-0
[1] 雷罗岚.跟踪控制系统辨识技术研究[D].成都:中国科学院研究生院,2015:4-5.
[2] 夏运霞.运动平台中惯性稳定控制技术研究[D].成都:中国科学院光电技术研究所,2013:50-51.
[3] 田竞.惯性稳定平台中的多传感器控制技术研究[D].成都:电子科技大学,2016:18-19.
[4] SFRALib[OL].http://www.ti.com.cn/mcu/cn/docs/litabsmu-ltiplefilelist.tsp?sectionId=96&tabId=1502&litera-tureNumber=spruhz5a&docCategoryId=6&familyId=916&key-Match=SFRA&tisearch=Search-CN-Everything.
[5] 李锦英.光电跟踪系统中永磁同步电机驱动与控制技术研究[D].北京:中国科学院研究生院,2012:55.
[1] 张捷, 唐强, 刘朔晗, 曹越, 赵维, 刘韬, 谢士明.
智能电网中基于优先级的预约式电动汽车充电管理研究
Priority Based EV Charging Management Under Service Reservation in Smart Grid
计算机科学, 2022, 49(6): 55-65. https://doi.org/10.11896/jsjkx.220200013
[2] Renata WONG.
早期量子算法在量子通信、量子纠错等领域的应用
Application of Early Quantum Algorithms in Quantum Communication,Error Correction and Other Fields
计算机科学, 2022, 49(6A): 645-648. https://doi.org/10.11896/jsjkx.210400214
[3] 张光君, 张翔.
应用“大数据+区块链”优化立法评估制度的机理与路径
Mechanism and Path of Optimizing Institution of Legislative Evaluation by Applying “Big Data+Blockchain”
计算机科学, 2021, 48(10): 324-333. https://doi.org/10.11896/jsjkx.201200105
[4] 李莉.
多赢家投票理论的研究进展
Survey on Multi-winner Voting Theory
计算机科学, 2021, 48(1): 217-225. https://doi.org/10.11896/jsjkx.200600013
[5] 王丽星, 曹付元.
基于Huber损失的非负矩阵分解算法
Huber Loss Based Nonnegative Matrix Factorization Algorithm
计算机科学, 2020, 47(11): 80-87. https://doi.org/10.11896/jsjkx.190900144
[6] 满芮, 杨萍, 季程雨, 许博文.
乳腺癌组织病理学图像分类方法研究综述
Survey of Classification Methods of Breast Cancer Histopathological Images
计算机科学, 2020, 47(11A): 145-150. https://doi.org/10.11896/jsjkx.191100098
[7] 王瑞杰, 李军怀, 王侃, 王怀军, 商珣超, 徒鹏佳.
基于改进特征子集区分度的行为识别特征选择方法
Feature Selection Method for Behavior Recognition Based on Improved Feature Subset Discrimination
计算机科学, 2020, 47(11A): 204-208. https://doi.org/10.11896/jsjkx.200100030
[8] 王萌, 丁志军.
一种新的设备指纹特征选择及模型构建方法
New Device Fingerprint Feature Selection and Model Construction Method
计算机科学, 2020, 47(7): 257-262. https://doi.org/10.11896/jsjkx.190900107
[9] 韩慧健, 宋馨芳, 张慧.
一种城市需水量预测的模糊认知图方法
Fuzzy Cognitive Map Method for Forecasting Urban Water Demand
计算机科学, 2019, 46(11A): 47-51.
[10] 朱峙成, 刘佳玮, 阎少宏.
多标签学习在智能推荐中的研究与应用
Research and Application of Multi-label Learning in Intelligent Recommendation
计算机科学, 2019, 46(11A): 189-193.
[11] 孙志, 孙雪姣.
P2P环境中的skyline查询综述
Survey of Skyline Processing in P2P Environments
计算机科学, 2018, 45(11A): 63-70.
[12] 杨风开, 程素霞.
基于GA-BP神经网络的双摄像机位姿视觉调节方法
Method for Visual Adjustment of Two-camera Position Based on GA-BP Neural Network
计算机科学, 2018, 45(11A): 185-188.
[13] 李孟君, 黎文伟.
基于视觉特性的手机屏幕亮度自适应调节算法
Adaptive Adjustment Algorithm of Mobile Phone Screen Brightness Based on Visual Characteristics
计算机科学, 2019, 46(2): 255-260. https://doi.org/10.11896/j.issn.1002-137X.2019.02.039
[14] 赵天骐, 陆佃杰, 刘一良, 张桂娟.
基于内容感知和团购策略的云视频分发网络
Content-aware and Group-buying Based Cloud Video Delivery Networks
计算机科学, 2018, 45(6A): 342-347.
[15] 陈晋音, 熊晖, 郑海斌.
基于粒子群算法的支持向量机的参数优化
Parameters Optimization for SVM Based on Particle Swarm Algorithm
计算机科学, 2018, 45(6): 197-203. https://doi.org/10.11896/j.issn.1002-137X.2018.06.035
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!