计算机科学 ›› 2020, Vol. 47 ›› Issue (11A): 204-208.doi: 10.11896/jsjkx.200100030

• 计算机图形学&多媒体 • 上一篇    下一篇

基于改进特征子集区分度的行为识别特征选择方法

王瑞杰1, 李军怀1,2, 王侃1,2, 王怀军1,2, 商珣超1, 徒鹏佳1   

  1. 1 西安理工大学计算机科学与工程学院 西安 710048
    2 陕西省网络计算与安全技术重点实验室 西安 710048
  • 出版日期:2020-11-15 发布日期:2020-11-17
  • 通讯作者: 李军怀(lijunhuai@xaut.edu.cn)
  • 作者简介:2191220007@stu.xaut.edu.cn
  • 基金资助:
    科技部重点研发计划(2017YFB1402103);国家自然科学基金(61971347);西安市科技计划项目(201805037YD15CG21(4))

Feature Selection Method for Behavior Recognition Based on Improved Feature Subset Discrimination

WANG Rui-jie1, LI Jun-huai1,2, WANG Kan1,2, WANG Huai-jun1,2, SHANG Xun-chao1, TU Peng-jia1   

  1. 1 School of Computer Science and Engineering,Xi'an University of Technology,Xi'an 710048,China
    2 Shaanxi Key Laboratory for Network Computing and Security Technology,Xi'an 710048,China
  • Online:2020-11-15 Published:2020-11-17
  • About author:WANG Rui-jie,born in 1997,postgra-duate,is a member of China Computer Federation.His main research interests include machine learning and action re-cognition.
    LI Jun-huai,born in 1969,Ph.D,professor,Ph.D supervisor,is a member of China Computer Federation.His main research interests include network computing,internet of things and cloud computing technology.
  • Supported by:
    This work was supported by the National Key R&D Program of China (2017YFB1402103),National Natural Science Foundation of China (61971347) and Project of Xi'an Science and Technology Planning Foundation (201805037YD15CG21(4)).

摘要: 基于传感器的人体行为识别方法在健康监测、运动分析和人机交互等方面得到了广泛应用。特征选择是准确识别人体行为的关键环节,其目的是在提高分类性能的基础上从高维特征空间中筛选出与分类相关的特征,以降低特征维数和计算复杂度。然而,传统的特征选择方法面临着未考虑所选特征冗余性的挑战。因此,针对基于特征子集区分度(Discernibility of Feature Subsets,DFS)衡量准则的特征选择方法仅考虑多个特征的相关性而忽视特征之间冗余性对分类结果影响等缺陷,提出一种基于冗余性的特征子集区分度衡量准则的特征选择方法(Redundancy and Discernibility of Feature Subsets,R-DFS),在特征选择的过程引入冗余性分析,删除冗余特征,以提高分类准确率和降低计算复杂度。实验结果表明,改进方法可有效降低特征维数并提高分类准确度。

关键词: 加速度传感器, 特征相关性和冗余性, 特征选择, 特征子集区分度, 行为识别

Abstract: Sensor-based human behavior recognition has been widely used in health monitoring,motion analysis and human-computer interaction.Feature selection acts a critical step when identifying human behaviors accurately,aiming to improve classification performance by selecting classification-related features,so as to reduce feature dimensions and computational complexity.The absence of feature redundancy,nevertheless,poses challenges to legacy feature selection methods.Therefore,to resolve the insufficiency that only feature correlation but not feature redundancy is involved in the Discernibility of Feature Subsets (DFS)-based feature selection method,a novel Redundancy and Discernibility of Feature Subsets (R-DFS)-based feature selection method is proposed to incorporate the redundancy analysis into feature selection process and remove redundant features,so as to improve classification accuracy rate and reduce computational complexity as well.Experimental results reveal that the improved method can efficiently reduce the feature dimension with the improved classification accuracy.

Key words: Acceleration sensor, Behavior recognition, Feature correlation, Feature selection, Feature subset discrimination, redundancy

中图分类号: 

  • TP3-05
[1] CHEN P,TU Y,TONG J,et al.Design of Wearable Fall Detection Intelligent System [J].Sensors and Microsystems,2017,36(2):114-116.
[2] MUHAMMAD S,STEPHAN B,OZLEM D I,et al.A Survey of Online Activity Recognition Using Mobile Phones [J].Sensors,2015,15(1):2059-2085.
[3] GOMES D,MENDES-MOREIRA J,SOUSA I,et al.Eating and Drinking Recognition in Free-Living Conditions for Triggering Smart Reminders[J].Sensors,2019,19(12):2803.
[4] YUAN J G.Design and Implementation of Educational VRGames Based on UE4[C]//Southwest Petroleum University.Southwest Petroleum University,2019:249-254.
[5] CERO D E,BARAKOVI H J,BARAKOVI S.Step by StepTowards Effective Human Activity Recognition:A Balance between Energy Consumption and Latency in Health and Wellbeing Applications[J].Sensors,2019,19(23):5206.
[6] ZHENG Z W,DU J J,HUO M M,et al.Review of Research on Human Activity Recognition Based on Wearable Sensors [J].Computer Applications,2018,38(5):1223-1229.
[7] SHARMILA A,GEETHANJALI P.Evaluation of Time Do-main Features Using Best Feature Subsets Based on Mutual Information For Detecting Epilepsy[J].Journal of Medical Engineering & Technology,2018,42(7):487-500.
[8] AHMAD J,MUHAMMAD K,BAIK S W.Medical Image Retrieval with Compact Binary Codes Generated in Frequency Domain Using Highly Reactive Convolutional Features [J].Journal of Medical Systems,2017,42(2):3-24.
[9] WU Q S,LIU C Y,LIN L H.Hybrid Feature Selection Algorithm Fusion Sequence Backward Selection and Support Vector Machine[J].Computer System Applications,2019,28 (7):174-179.
[10] HUI H H,CHENG W H,MING D L.Hybrid Feature Selection by Combining Filters and Wrappers[J].Expert Systems with Applications,2011,38(7):8144-8150.
[11] XIE J Y,XIE W X.Feature Selection Algorithm Based on Feature Subset Discrimination and Support Vector Machine [J].Chinese Journal of Computers,2014,37(8):1704-1718.
[12] DAVIDE A,ALESSANDRO G,LUCA O,et al.A Public Domain Dataset for Human Activity Recognition Using Smartphones[C]//21th European Symposium on Artificial Neural Networks,Computational Intelligence and Machine Learning(ESANN 2013).Bruges,Belgium,2013:24-26.
[13] HYUNKI L,DAE-W K.MFC:Initialization method for multi-label feature selection based on conditional mutual information[J].Neurocomputing,2019,22(6):1-12.
[14] PENG X B,ZHU Y Q.Weighted SVM Algorithm Based on Intra-feature Correlation and Mutual Information [J].Computer Science,2018,45(12):182-186.
[15] ZHANG L,WANG C.Multi-label Feature Selection Algorithm Based on Maximum Correlation and Minimum Redundant Joint Mutual Information [J].Journal of Communications,2018,39(5):111-122.
[16] YANG Y J,LIU S,CHANG D X.A Method for Network Event Correlation Pattern Drift Detection Based on Relation Entropy and J Measure [J].Computer Science,2016,43(1):259-263.
[17] YANG L,WANG Y.Review of Various Cross-Validation Estimation Methods for Generalized Errors [J].Application Research of Computers,2015,32(5):1287-1290.
[1] 李斌, 万源.
基于相似度矩阵学习和矩阵校正的无监督多视角特征选择
Unsupervised Multi-view Feature Selection Based on Similarity Matrix Learning and Matrix Alignment
计算机科学, 2022, 49(8): 86-96. https://doi.org/10.11896/jsjkx.210700124
[2] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[3] 肖治鸿, 韩晔彤, 邹永攀.
基于多源数据和逻辑推理的行为识别技术研究
Study on Activity Recognition Based on Multi-source Data and Logical Reasoning
计算机科学, 2022, 49(6A): 397-406. https://doi.org/10.11896/jsjkx.210300270
[4] 康雁, 王海宁, 陶柳, 杨海潇, 杨学昆, 王飞, 李浩.
混合改进的花授粉算法与灰狼算法用于特征选择
Hybrid Improved Flower Pollination Algorithm and Gray Wolf Algorithm for Feature Selection
计算机科学, 2022, 49(6A): 125-132. https://doi.org/10.11896/jsjkx.210600135
[5] 邵延华, 李文峰, 张晓强, 楚红雨, 饶云波, 陈璐.
基于时空图卷积和注意力模型的航拍暴力行为识别
Aerial Violence Recognition Based on Spatial-Temporal Graph Convolutional Networks and Attention Model
计算机科学, 2022, 49(6): 254-261. https://doi.org/10.11896/jsjkx.210400272
[6] 储安琪, 丁志军.
基于灰狼优化算法的信用评估样本均衡化与特征选择同步处理
Application of Gray Wolf Optimization Algorithm on Synchronous Processing of Sample Equalization and Feature Selection in Credit Evaluation
计算机科学, 2022, 49(4): 134-139. https://doi.org/10.11896/jsjkx.210300075
[7] 孙林, 黄苗苗, 徐久成.
基于邻域粗糙集和Relief的弱标记特征选择方法
Weak Label Feature Selection Method Based on Neighborhood Rough Sets and Relief
计算机科学, 2022, 49(4): 152-160. https://doi.org/10.11896/jsjkx.210300094
[8] 苗启广, 辛文天, 刘如意, 谢琨, 王泉, 杨宗凯.
面向智慧教育行为分析的图卷积骨架动作识别方法
Graph Convolutional Skeleton-based Action Recognition Method for Intelligent Behavior Analysis
计算机科学, 2022, 49(2): 156-161. https://doi.org/10.11896/jsjkx.220100061
[9] 李宗然, 陈秀宏, 陆赟, 邵政毅.
鲁棒联合稀疏不相关回归
Robust Joint Sparse Uncorrelated Regression
计算机科学, 2022, 49(2): 191-197. https://doi.org/10.11896/jsjkx.210300034
[10] 刘昕, 袁家斌, 王天星.
基于场景先验知识的室内人体行为识别方法
Interior Human Action Recognition Method Based on Prior Knowledge of Scene
计算机科学, 2022, 49(1): 225-232. https://doi.org/10.11896/jsjkx.201100185
[11] 张叶, 李志华, 王长杰.
基于核密度估计的轻量级物联网异常流量检测方法
Kernel Density Estimation-based Lightweight IoT Anomaly Traffic Detection Method
计算机科学, 2021, 48(9): 337-344. https://doi.org/10.11896/jsjkx.200600108
[12] 杨蕾, 降爱莲, 强彦.
基于自编码器和流形正则的结构保持无监督特征选择
Structure Preserving Unsupervised Feature Selection Based on Autoencoder and Manifold Regularization
计算机科学, 2021, 48(8): 53-59. https://doi.org/10.11896/jsjkx.200700211
[13] 侯春萍, 赵春月, 王致芃.
基于自反馈最优子类挖掘的视频异常检测算法
Video Abnormal Event Detection Algorithm Based on Self-feedback Optimal Subclass Mining
计算机科学, 2021, 48(7): 199-205. https://doi.org/10.11896/jsjkx.200800146
[14] 胡艳梅, 杨波, 多滨.
基于网络结构的正则化逻辑回归
Logistic Regression with Regularization Based on Network Structure
计算机科学, 2021, 48(7): 281-291. https://doi.org/10.11896/jsjkx.201100106
[15] 周钢, 郭福亮.
基于特征选择的高维数据集成学习方法研究
Research on Ensemble Learning Method Based on Feature Selection for High-dimensional Data
计算机科学, 2021, 48(6A): 250-254. https://doi.org/10.11896/jsjkx.200700102
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!