计算机科学 ›› 2020, Vol. 47 ›› Issue (8): 302-312.doi: 10.11896/jsjkx.190700136
王慧1, 2, 乐孜纯3, 龚轩1, 武玉坤1, 左浩1
WANG Hui1, 2, LE Zi-chun3, GONG Xuan1, WU Yu-kun1, ZUO Hao1
摘要: 复杂网络链路预测作为网络科学研究中一个重要的研究方向, 受到了越来越多来自各个学科领域专家的关注, 它可以利用现有的网络信息, 如节点和边缘的特征, 来预测未来可能形成的关系、网络中缺失的信息以及新的或正在消失的信息, 识别虚假交互, 评估网络演化机制, 进行网络重构等。当前链路预测的文献主要来自工程学、计算机科学与物理学的专家, 它们各自为政, 缺少合作, 结合多学科进行链路预测的综述论文少之又少。因此, 文中从计算机科学和物理学的视角全面回顾、分析和讨论基于特征分类的链路预测算法的研究进展, 介绍了该领域专家们提出的多种特征提取技术, 首次把分层的思想引入链路预测算法分类中, 将分类模型分为3层, 即元数据层、特征分类层和特征抽取层。该分类模型包括“2个大块7个方面”, 即把常用的链路预测算法分为2个大块(特征提取方法和特征学习方法)和7个方面(基于相似性的方法、基于似然分析的方法、基于概率模型的方法、矩阵分解方法、基于随机游走的方法、基于神经网络的方法和基于自定义损失函数的方法)。该分类方法覆盖了各学科中许多经典的和最新的链路预测技术, 包括当前最流行的图神经网络链路预测技术GNN(Graph Neural Network), GCN(Graph Convolutional Network), RNN(Recurrent Neural Network)和RL(Reinforcement Learning)。文中研究了这些算法的模型复杂性和预测性能的差异, 并对当前链路预测技术未来所面临的挑战进行了讨论。
中图分类号:
[1] | RAMESH R S.Link prediction and path analysis using markov chains[J].Computer Networks, 2000, 60(33):377-386. |
[2] | LIBEN-NOWEL D, KLEINBERGN, JON K.The link-prediction problem forsocial networks[J].Journal of The American Society For InformationScience and Technology, 2007, 58(7):1019-1031. |
[3] | LV L L.Link prediction on complex networks[J].Journal ofUniversity of Electronic Science and Technology of China, 2010, 39(5):651-661. |
[4] | HASAN M A, ZAKI M.A survey of link prediction in socialnetworks[J].Social Network Data Analytics, 2011, 40(5):243-275. |
[5] | LV L L, REN X L, ZHOU T.Network link prediction:concepts and frontiers [J].Communication of China Computer Society, 2016, 12(4):12-21. |
[6] | VALVERDE R J, LOPES A A.Exploiting behaviors of communities of twitter users for link prediction[J].Soc. Netw. Anal. Min., 2013, 20(3):1063-1074. |
[7] | LIU H, HU Z, HADDADI H.Hidden link prediction based on node centrality and weak ties[J].Europhys Lett., 2013, 101(1):65-75. |
[8] | YANG S H, LONG B, SMOLA A, et al.Like like alike:jointfriendship and interest propagation in social networks[C]∥Proceedings of the 20th International Conference on World Wide Web.ACM, 2011:537-546. |
[9] | CHO E, MYERS S A, LESKOVEC J.Friendship and mobility:user movement in location-based social networks[C]∥Procee-dings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM.2011:1082-1090. |
[10] | LEO K.A new status index derived from sociometric analysis[J].Psychometrika, 1953, 50(18):39-43. |
[11] | ELIZABETH A L, PETTER H, MARK E N.Vertex similarityin networks[J].Physical Review E, 2006, 73(2):121-130. |
[12] | JEH G, WIDOM J.SimRank:a measure of structural-contextsimilarity[C]∥Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’02).ACM, 2002:538-543. |
[13] | KLOUMANN I M, UGANDER J, KLEINBERG J.Block mo-dels and personalized PageRank[J].The National Academy of Sciences, 2017, 114(1):33-38. |
[14] | SHANG M S, L L, ZENG W, et al.Relevance is more significant than correlation:Information filtering on sparse data[J].Europhys Lett., 2009, 88(6):68008p1-68008p4. |
[15] | NEWMAN M E J.Clustering and preferential attachment ingrowing networks[J].Phys. Rev. E., 2001, 64(10):251-264. |
[16] | SALTON G, MCGILLM.Introduction to Modern InformationRetrieval[J].McGraw-Hill, 1983, 32(6):528-536. |
[17] | ADAMIC L A, ADAR E.Friend and neighbors on the web[J].Soc Networks, 2003, 25(6):211-230. |
[18] | LIU Y Y, ZHAO C L, WANG X J.The degree-related clustering coefficient and its application to link prediction[J].Physica A, 2016, 454(15):24-33. |
[19] | ZHOU T, L L, ZHANG Y C.Predicting missing links via local information[J].Eur. Phys. J. B., 2009, 80(71):623-630. |
[20] | RAVASZ E, SOMERA A L, MONGRU D, et al.Hierarchicalorganization of modularity in metabolic networks[J].Science, 2002, 297(12):1551-1558. |
[21] | LV L, JIN C H, ZHOU T.Similarity index based on local paths for link prediction of complex network[J].Phys. Reve., 2009, 80(4):211-223. |
[22] | WANG P, XU B W, WU Y R.Link predictionin social net-works:the state-of-the-art[J].Science China Information Scien-ces, 2015, 58(1):1-38. |
[23] | HU R J, TANG J X, YUAN Y N.Link prediction in complex networks based on the interactions among paths[J].Physical A, 2019, 510(4):52-67. |
[24] | ALEXIS P, PANAGIOTIS S, YANNIS M.Fast and accuratelink prediction in social networking systems[J].Systems and Software, 2012, 60(9):2119-2132. |
[25] | ZHU X, TIAN H, CAI S, et al.Predicting missing links via significant paths[J].EPL, 2014, 108(4):18008-18014. |
[26] | AARON C, CRISTOPHER M, MARK E J.Hierarchicalstructure and theprediction of missing links in networks[J].Nature, 2008, 453(71):98-101. |
[27] | GUIMER R, SALES P M.Missing and spurious interactionsand the reconstruction of complex networks[J].PNAS, 2009, 106(52):22073-22078. |
[28] | BEN T, PIETER A, WONG M F.Relationalmarkov networks[J].Introduction to Statistical Relational Learning, 2007, 40(13):175-200. |
[29] | LV L Y.ZHOU T.Link prediction in complex networks:A survey[J].Physica A:Statistical Mechanics and Its Applications, 2011, 390(6):1150-1170. |
[30] | MENON A K, ELKAN C.Link prediction via matrix factorization in Machine Learning and Knowledge Discovery in Databases[C]∥Springer.2011:437-452. |
[31] | ADITYA K M, CHARLES E.Link Prediction via Matrix Factorization[C]∥Proceedings of the 2011 European Conference on Machine Learning and Knowledge Discovery in Databases.ACM, 2011:437-452. |
[32] | KUNEGIS J, LOMMATZSCH A.Learning spectral graphtransformations for link prediction[C]∥ Proceedings of the 26th Annual International Conference on Machine Learning.ACM, 2009:561-568. |
[33] | CHEN Z, ZHANG W.A Marginalized Denoising Method forLink Prediction in Relational Data[C]∥ Proceedings of the 2014 SIAM International Conference on Data Mining.ACM, 2015:64-72. |
[34] | DAI L Y, KONG X Z, YUAN S S, et al.Integrative graph regularized matrix factorization for drug-pathway associations analysis[J].Computational Biology and Chemistry, 2019, 78(7):474-480. |
[35] | REN Y W, ZHOU J L, WANG J.Quality-Relevant Fault Monitoring Based on Locally Linear Embedding Orthogonal Projection to Latent Structure[J].Industrial & Engineering Chemistry Research, 2019, 58(3):1262-1272. |
[36] | OU M D, CUI P, PEI J, et al.Asymmetrictransitivity preserving graph embedding[C]∥Proceedings of the 22nd ACMSIGKDD International Conference on Knowledge Discovery and Data Mining.ACM, 2017:1105-1114. |
[37] | BELKIN M, NIYOGI P.Laplacian eigenmaps and spectral techniques for embedding and clustering[C]∥Advances in Neural Information Processing Systems.2002:585-591. |
[38] | CAO S, LU W, XU Q.Grarep:Learning graph representations with global structural information[C]∥Proceedings of the 24th ACM International on Conference on Information and Know-ledge Management.ACM, 2015:891-900. |
[39] | WANG H W, WANG J L, XIE X, et al.GraphGAN:Graph representation learningwith generative adversarial nets[J].IEEE Transaction on Knowledge and Data Engineering, 2017, 30(22):11-19. |
[40] | CAI L J, XU Y B, HE T Q, et al.A New Algorithm of DeepWalk Based On Probability[J].Journal of Physics:Conference Series, 2019, 1069(1):130-135. |
[41] | GROVER A, LESKOVEC J.Node2Vec:Scalable Feature learning for Network[J].HHS Public Access, 2016, 14(8):855-864. |
[42] | WANG D, CUI P, ZHU W.Structural deep network embedding[C]∥Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining.ACM, 2016:1225-1234. |
[43] | FRENSNO D, CARLOS W L, SARAI M C, et al.DNGR-1 in dendritic cells limits tissue damage by dampening neutrophil recruitment[J].Science, 2019, 6412(362):351-356. |
[44] | TOMAS N K, MAX W, Variational Graph Auto-Encoders[J].Springer, 2016, 28(3):61-63. |
[45] | LUCA F, MATHIAS N, MASSIMILIANO P.Learning DiscreteStructures for Graph Neural Networks[J].ICML.2019, 30(11):960-973. |
[46] | YOU J X, REX Y, XIANG R.Graphrnn:Generating realisticgraphs with deepauto-regressive models[C]∥International Conference on Machine Learning.ACM, 2018:5694-5703. |
[47] | MONTI F, BRONSTEIN M, BRESSON X.Geometric matrixcompletionwith recurrent multi-graph neural networks[J].Advances in NeuralInformation Processing Systems, 2017, 30(4):3697-3707. |
[48] | BUI L Q, PHAN A V, NGUYEN Y L H.DGCNN:A convolutional neural network over large-scale labeled graphs[J].Neural Networks:The Official Journal of the International Neural Network Society, 2017, 108(11):533-543. |
[49] | CAO D N, KIPF T.Molgan:An implicit generative model forsmall molecular graphs[J].ICML 2018 Workshop on Theoretical Foundations and Applications of Deep Generative Models, 2018, 97(30):181-192. |
[50] | TANG J, QU M, WANG M, et al.Line:Large-scale information network embedding[C]∥Ternational Conference on Word Wide Web.ACM, 2015:1067-1077. |
[51] | KIM Y H, YOO J, KIM S J, et al.Comparison of Scattering Cross-Sections by MCNP5 and TRANSX/TWODANT Codes in Sodium-Cooled Fast Reactor[J].Transactions of the American Nuclear Society, 2018, 106(1):719-722. |
[52] | WANG H, LE Z C, GONG X, et al.Link predicton of complex network is analyzed from the perspective of informatics[J].Journal of Chinese Computer Systems, 2020, 41(2):316-326. |
[1] | 李吟, 李必信. 基于脚本预测和重组的内存泄漏测试加速技术[J]. 计算机科学, 2020, 47(9): 31-39. |
[2] | 丁钰, 魏浩, 潘志松, 刘鑫. 网络表示学习算法综述[J]. 计算机科学, 2020, 47(9): 52-59. |
[3] | 苏畅, 张定权, 谢显中, 谭娅. 面向5G通信网络的NFV内存资源管理方法[J]. 计算机科学, 2020, 47(9): 246-251. |
[4] | 杨超, 刘志. 基于TASEP模型的复杂网络级联故障研究[J]. 计算机科学, 2020, 47(9): 265-269. |
[5] | 张梦月, 胡军, 严冠, 李慧嘉. 基于可见性图网络的中国专利申请关注度分析[J]. 计算机科学, 2020, 47(8): 189-194. |
[6] | 张清琪, 刘漫丹. 复杂网络社区发现的多目标五行环优化算法[J]. 计算机科学, 2020, 47(8): 284-290. |
[7] | 袁野, 和晓歌, 朱定坤, 王富利, 谢浩然, 汪俊, 魏明强, 郭延文. 视觉图像显著性检测综述[J]. 计算机科学, 2020, 47(7): 84-91. |
[8] | 彭伟, 胡宁, 胡璟璟. 图像隐写分析算法研究概述[J]. 计算机科学, 2020, 47(6A): 325-331. |
[9] | 董明刚, 弓佳明, 敬超. 基于谱聚类的多目标进化社区发现算法研究[J]. 计算机科学, 2020, 47(6A): 461-466. |
[10] | 包振山, 郭俊南, 谢源, 张文博. 基于LSTM-GA的股票价格涨跌预测模型[J]. 计算机科学, 2020, 47(6A): 467-473. |
[11] | 徐江峰谭玉龙. 基于机器学习的HBase配置参数优化研究[J]. 计算机科学, 2020, 47(6A): 474-479. |
[12] | 朱林立, 华钢, 高炜. 决定图框架下本体学习算法的稳定性分析[J]. 计算机科学, 2020, 47(5): 43-50. |
[13] | 富坤, 仇倩, 赵晓梦, 高金辉. 基于节点演化分阶段优化的事件检测方法[J]. 计算机科学, 2020, 47(5): 96-102. |
[14] | 袁榕, 宋玉蓉, 孟繁荣. 一种基于加权网络拓扑权重的链路预测方法[J]. 计算机科学, 2020, 47(5): 265-270. |
[15] | 李鑫超, 李培峰, 朱巧明. 一种基于改进向量投影距离的知识图谱表示方法[J]. 计算机科学, 2020, 47(4): 189-193. |
|