计算机科学 ›› 2021, Vol. 48 ›› Issue (4): 1-13.doi: 10.11896/jsjkx.200600151

• 计算机科学理论 • 上一篇    下一篇

约束进化算法及其应用研究综述

李笠, 李广鹏, 常亮, 古天龙   

  1. 桂林电子科技大学广西可信软件重点实验室 广西 桂林541004
  • 收稿日期:2020-06-24 修回日期:2020-09-26 发布日期:2021-04-09
  • 通讯作者: 李笠(lili@guet.edu.cn)
  • 基金资助:
    国家自然科学基金项目(62006058,U1811264,U1711263,61966009);广西自然科学基金项目(2018GXNSFAA138090,2018GXNSFDA281049,2017GXNSFAA198283)

Survey of Constrained Evolutionary Algorithms and Their Applications

LI Li, LI Guang-peng, CHANG Liang, GU Tian-long   

  1. Guangxi Key Laboratory of Trusted Software,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China
  • Received:2020-06-24 Revised:2020-09-26 Published:2021-04-09
  • About author:LI Li,born in 1986,Ph.D,M.S supervisor,is a member of China Computer Federation.His main research interests include multi-objective optimization methods and their applications.
  • Supported by:
    National Natural Science Foundation of China(62006058,U1811264,U1711263,61966009) and Guangxi Natural Science Foundation(2018GXNSFAA138090,2018GXNSFDA281049,2017GXNSFAA198283).

摘要: 约束优化问题广泛存在于科学研究和工程实践中,其对应的约束优化进化算法也成为了进化领域的重要研究方向。约束优化进化算法的本质问题是如何有效地利用不可行解和可行解的信息,平衡目标函数和约束条件,使得算法更加高效。首先对约束优化问题进行定义;然后详细分析了目前主流的约束进化算法,同时,基于不同的约束处理机制,将这些机制分为约束和目标分离法、惩罚函数法、多目标优化法、混合法和其他算法,并对这些方法进行了详细的分析和总结;接着指出约束进化算法亟待解决的问题,并明确指出未来需要进一步研究的方向;最后对约束进化算法在工程优化、电子和通信工程、机械设计、环境资源配置、科研领域和管理分配等方面的应用进行了介绍。

关键词: 工程实践, 约束优化问题, 进化算法, 约束优化进化算法, 约束处理机制

Abstract: Constrained optimization problems exist widely in scientific research and engineering practice,and the corresponding constrained evolutionary algorithms have become an important research direction in the field of evolutionary computation.The essential problem of constrained evolutionary algorithm is how to effectively use the information of infeasible and feasible solutions and balance the objective function and constraints to make the algorithm more efficient.Firstly,this paper defines the problem of constraint optimization.Then it analyzes the current mainstream constraint evolution algorithms in detail.At the same time,based on different constraint handling mechanisms,these mechanisms are divided into constraint and objective separation methods,pena-lty function methods,multi-objective optimization methods,hybrid methods and so on,and these methods are analyzed and summarized comprehensively.Next,it points out the urgent problems that need to be solved as well as the research direction.Finally,the application of constrained evolutionary algorithm in engineering optimization,electronic and communication engineering,mechanical design,environmental resource allocation,scientific research and management allocation are introduced.

Key words: Engineering practice, Constraint optimization problem, Evolutionary algorithm, Constraint optimization evolutionary algorithm, Constraint handling mechanism

中图分类号: 

  • TP181
[1]MICHALEWICZ Z S M.Evolutionary algorithms for constrained parameter optimization problems[J].Evolutionary Computation,2014,4(1):1-32.
[2]COELLO C A C.Theoretical and numerical constraint-handling techniques used with evolutionary algorithms:a survey of the state of the art[J].Computer Methods in Applied Mechanics and Engineering,2002,191(11/12):1245-1287.
[3]DEB K.An efficient constraint handling method for genetic algorithms[J].Computer Methods in Applied Mechanics and Engineering,2000,186(2):311-338.
[4]WANG Y,CAI Z X,ZHOU Y R,et al.Constrained optimization evolutionary algorithm [J].Acta Software Sinica,2009,20(1):11-29.
[5]DEB K,PRATAP A,AGARWAL S,et al.A fast and elitistmultiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
[6]CUI C G,LI Y J,WU T J.A relative feasibility degree based approach for constrained optimization problems[J].Journal of Zhejiang University-Science C(Computer & Electronics),2010,11(4):249-260.
[7]CHENG R,JIN Y,OLHOFER M,et al.A Reference VectorGuided Evolutionary Algorithm for Many-Objective Optimization[J].IEEE Transactions on Evolutionary Computation,2016,20(5):773-791.
[8]FAN Z,LI W,CAI X,et al.Angle-based constrained dominance principle in MOEA/D for constrained multi-objective optimization problems[C]//Congress on Evolutionary Computation.2016:460-467.
[9]GORDIAN-RIVERA L,MEZURA-MONTES E.A Combination of Specialized Differential Evolution Variants for Constrained Optimization[C]//Ibero-American Conference on Artificial Intelligence.Springer Berlin Heidelberg,2012.
[10]MOHAMED A W,SABRY H Z.Constrained optimization based on modified differential evolution algorithm[J].Information Sciences,2012,194:171-208.
[11]SARKER R A,ELSAYED S M,RAY T.Differential Evolution With Dynamic Parameters Selection for Optimization Problems[J].IEEE Transactions on Evolutionary Computation,2014,18(5):689-707.
[12]DHADWAL M K,JUNG S N,KIM C J.Advanced particleswarm assisted genetic algorithm for constrained optimization problems[J].Computational Optimization and Applications,2014,58(3):781-806.
[13]RUNARSSON T P,YAO X.Stochastic ranking for constrained evolutionary optimization[J].IEEE Transactions on Evolutionary Computation,2000,4(3):284-294.
[14]ZHANG M,LUO W,WANG X.Differential evolution with dynamic stochastic selection for constrained optimization[J].Information Sciences,2008,178(15):3043-3074.
[15]GUILLERMO L,COELLO C A C.A boundary search basedACO algorithm coupled with stochastic ranking[C]//IEEE Congress on Evolutionary Computation.IEEE,2007:165-172.
[16]TAKAHAMA T,SAKAI S.Constrained optimization by the ε constrained differential evolution with an archive and gradient-based mutation[C]//IEEE Congress on Evolutionary Computation.IEEE,2010:1-9.
[17]TAKAHAMA T,SAKAI S.Efficient constrained optimization by the ε constrained differential evolution with rough approximation using kernel regression[C]//IEEE Congress on Evolutionary Computation.IEEE,2012.
[18]YANG Y,LIU J,TAN S,et al.A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio[J].Applied Soft Computing Journal,2019,80:42-56.
[19]BREST J,BOSKOVIC B,ZUMER V.An improved self-adaptive differential evolution algorithm in single objective constrained real-parameter optimization[C]//Evolutionary Computation.IEEE,2010:1-8.
[20]TAKAHAMA T,SAKAI S.Efficient Constrained Optimization by the ε Constrained Rank-Based Differential Evolution[C]//IEEE Congress on Evolutionary Computation.IEEE,2010.
[21]HOFFMEISTER F,SPRAVE J.Problem-Independent Handling of Constraints by Use of Metric Penalty Functions[J].Evolutionary Programming,1996:289-294.
[22]HOMAIFAR A,QI C X,LAI S H.Constrained Optimization Via Genetic Algorithms[J].Simulation,1994,62(4):242-253.
[23]HSIEH Y,LEE Y,YOU P.Solving nonlinear constrained optimization problems:An immune evolutionary based two-phase approach[J].Applied Mathematical Modelling,2015,39(19):5759-5768.
[24]KAZARLIS S,Petridis V.Varying Fitness Functions in Genetic Algorithms:Studying the Rate of Increase of the Dynamic Penalty Terms[C]//International Conference on Parallel Problem Solving from Nature.Heidelberg,Berlin:Springer,1998.
[25]TESSEMA B,YEN G G.An Adaptive Penalty Formulation for Constrained Evolutionary Optimization[J].IEEE Transactions on Systems,Man,and Cybernetics-Part A:Systems and Humans,2009,39(3):565-578.
[26]DE MELO V V,IACCA G.A modified Covariance Matrix Adaptation Evolution Strategy with adaptive penalty function and restart for constrained optimization[J].Expert Systems With Applications,2014,41(16):7077-7094.
[27]LIN C.A rough penalty genetic algorithm for constrained optimization[J].Information Sciences,2013,241:119-137.
[28]AFONSO C L,HELIO J B,HEDER S B.Variants of an adaptive penalty scheme for steady-state genetic algorithms in engineering optimization[J].Engineering Computations,2015,32(8):2182-2215.
[29]POWELL D,SKOLNICK M M.Using Genetic Algorithms inEngineering Design Optimization with Non-Linear Constraints[C]//International Conference on Genetic Algorithms.Morgan Kaufmann Publishers Inc.,1993:424-431.
[30]FERNANDO J,JOSÉ L V.Evolutionary Techniques for Con-strained Optimization Problems[C]//European Congress on Intelligent Techniques & Soft Computing.1999.
[31]ZHOU Y,ZHU M,WANG J,et al.Tri-Goal Evolution Framework for Constrained Many-Objective Optimization[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2020,50(8):3086-3099.
[32]CAI Z,WANG Y.A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization[J].IEEE Transactions on Evolutionary Computation,2006,10(6):658-675.
[33]WANG Y,CAI Z,ZHOU Y,et al.An Adaptive Tradeoff Model for Constrained Evolutionary Optimization[J].IEEE Transactions on Evolutionary Computation,2008,12(1):80-92.
[34]TASGETIREN M F,SUGANTHAN P N,PAN Q K,et al.An ensemble of differential evolution algorithms for constrained function optimization[J].IEEE Congress on Evolutionary Computation,2010,5(1):1-8.
[35]LIN Y F,DU W,DU W L,et al.Multi-objective differential evolution with dynamic hybrid constraint handling mechanism[J].Soft Computing,2019,23(12):4341-4355.
[36]LI K,CHEN R,FU G,et al.Two-Archive Evolutionary Algorithm for Constrained Multiobjective Optimization[J].IEEE Transactions on Evolutionary Computation,2019,23(2):303-315.
[37]DEB K,DATTA R,INSTITUTIONEN F T O S,et al.A bi-objective constrained optimization algorithm using a hybrid evolutionary and penalty function approach[J].Engineering Optimization,2013,45(5):503-527.
[38]DATTA R,DEB K.An adaptive normalization based constrained handling methodology with hybrid bi-objective and penalty function approach[C]//IEEE Congress on Evolutionary Computation.IEEE,2012:1-8.
[39]DATTA R,DEB K,COSTA M F P,et al.An evolutionary algorithm based pattern search approach for constrained optimization[C]//2013 IEEE Congress on Evolutionary Computation Computation.IEEE,2013:1355-1362.
[40]CAI X,HU Z,FAN Z.A novel memetic algorithm based on invasive weed optimization and differential evolution for constrained optimization[J].Soft Computing,2013,17(10):1893-1910.
[41]WANG Y,CAI Z,GUO G,et al.Multiobjective Optimizationand Hybrid Evolutionary Algorithm to Solve Constrained Optimization Problems[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B(Cybernetics),2007,37(3):560-575.
[42]LIEPINS G E,VOSE M D.Representational issues in genetic optimization[J].Journal of Experimental & Theoretical Artificial Intelligence,1990,2(2):101-115.
[43]HAN B,LEE S J.A genetic algorithm approach to measurement prescription in fault diagnosis[J].Information Sciences,1999,120(1-4):223-237.
[44]XIAO J,MICHALEWICZ Z,ZHANG L,et al.Adaptive evolutionary planner/navigator for mobile robots[J].IEEE Transactions on Evolutionary Computation,1997,1(1):18-28.
[45]XIAO J,MICHALEWICZ Z,ZHANG L,et al.EvolutionaryPlanner/Navigator:operator performance and self-tuning[C]//IEEE International Conference on Evolutionary Computation.1996:366-371.
[46]MICHALEWICZ Z,XIAO J.Evaluation of paths in evolutionary planner/navigator[C]//International Workshop on Biologically Inspired Evolutionary Systems.1995.
[47]LOZANO M,HERRERA F,KRASNOGOR N,et al.Real-Coded Memetic Algorithms with Crossover Hill-Climbing[J].Evolutionary Computation,2004,12(3):273-302.
[48]HO P Y,SHIMIZU K.Evolutionary constrained optimization using an addition of ranking method and a percentage-based tolerance value adjustment scheme[J].Information Sciences,2007,177(14):2985-3004.
[49]MEZURA-MONTES E,COELLO C A C.A simple multimembered evolution strategy to solve constrained optimization problems[J].IEEE Transactions on Evolutionary Computation,2005,9(1):1-17.
[50]AMIRJANOV A.A changing range genetic algorithm[J].International Journal for Numerical Methods in Engineering,2004,61(15):2660-2674.
[51]AMIRJANOV A.The development of a changing range genetic algorithm[J].Computer Methods in Applied Mechanics and Engineering,2006,195(19):2495-2508.
[52]LIU Z,WANG Y.Handling Constrained Multiobjective Optimization Problems With Constraints in Both the Decision and Objective Spaces[J].IEEE Transactions on Evolutionary Computation,2019,23(5):870-884.
[53]WHILE L,HINGSTON P.Usefulness of infeasible solutions in evolutionary search:An empirical and mathematical study[C]//Congress on evolutionary computation.2013:1363-1370.
[54]DEB K,PRATAP A,MEYARIVAN T.Constrained Test Problems for Multi-objective Evolutionary Optimization[C]//Evolutionary Multi-criterion Optimization,First International Conference.Zurich,Switzerland,2001:284-298.
[55]ZHANG Q F,ZHOU A M,ZHAO S Z,et al.Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition[J/OL].Mechanical engineering,2018.http://www.al-roomi.org/multimedia/CEC_Database/CEC2009/MultiObjectiveEA/CEC2009_MultiObjectiveEA_TechnicalReport.pdf.
[56]CHENG P.A Tunable Constrained Test Problems Generator for Multi-objective Optimization[C]//International conference on genetic and evolutionary computing.2008:96-100.
[57]FAN Z,HUANG H,LI W,et al.An opposition-based repair operator for multi-objective evolutionary algorithm in constrained optimization problems[C]//International Conference on Natural Computation.IEEE,2015:330-336.
[58]HE Q,WANG L.An effective co-evolutionary particle swarm optimization for constrained engineering design problems[J].Engineering Applications of Artificial Intelligence,2007,20(1):89-99.
[59]SINGH H K,ISAACS A,RAY T,et al.Infeasibility Driven Evolutionary Algorithm(IDEA) for Engineering Design Optimization[C]//AI 2008:Advances in Artificial Intelligence,21st Australasian Joint Conference on Artificial Intelligence,Auckland,New Zealand.2008.
[60]KHEAWHOM S.Efficient constraint handling scheme for differential evolutionary algorithm in solving chemical engineering optimization problem[J].Journal of Industrial and Engineering Chemistry,2010,16(4):620-628.
[61]COELLO C A C.Use of a self-adaptive penalty approach for engineering optimization problems[J].Computers in Industry,2000,41(2):113-127.
[62]LI L D,LI X,YU X,et al.A multi-objective constraint-handling method with PSO algorithm for constrained engineering optimization problems[C]//World Congress on Computational Intelligence.2008:1528-1535.
[63]MOTTE D,NORDIN A,BJARNEMO R,et al.Study of the Sequential Constraint-Handling Technique for Evolutionary Optimization With Application to Structural Problems[C]//Design Automation Conference.2011:521-531.
[64]FAN Q,YAN X.Differential evolution algorithm with co-evolution of control parameters and penalty factors for constrained optimization problems[J].Asia-Pacific Journal of Chemical Engineering,2012,7(2):227-235.
[65]ZOU P,RAJORA M,LIANG S Y.A new algorithm based on evolutionary computation for hierarchically coupled constraint optimization:methodology and application to assembly job-shop scheduling[J].Journal of Scheduling,2018,21(5):545-563.
[66]BAI R,BURKE E K,KENDALL G,et al.A Hybrid Evolutionary Approach to the Nurse Rostering Problem[J].IEEE Transactions on Evolutionary Computation,2010,14(4):580-590.
[67]BAI L,WANG J,JIANG Y,et al.Improved Hybrid Differential Evolution-Estimation of Distribution Algorithm with Feasibility Rules for NLP/MINLP Engineering Optimization Problems[J].Chinese Journal of Chemical Engineering,2012,20(6):1074-1080.
[68]HU R,QIAN B.A hybrid differential evolutionary algorithm for stochastic finite buffer pipeline scheduling [J].Acta automatica Sinica,2009,35(12):1580-1586.
[69]CAGNINA L C,ESQUIVEL S C,COELLO C A C.Solving Engineering Optimization Problems with the Simple Constrained Particle Swarm Optimizer[J].Informatica,2008,32(3):319-326.
[70]LUCENA R R,BAIOCO J S,LIMA B S L P,et al.Optimal design of submarine pipeline routes by genetic algorithm with different constraint handling techniques[J].Advances in Engineering Software,2014,76:110-124.
[71]CRUZ J M,ANDRESTORO B,HERRAN A,et al.Multiobjective optimization of the transport in oil pipelines networks[C]//Emerging Technologies and Factory Automation.2003:566-573.
[72]SARKER R,RAY T.An improved evolutionary algorithm forsolving multi-objective crop planning models[J].Computers and Electronics in Agriculture,2009,68(2):191-199.
[73]FAN Z,LIU J,SORENSEN T,et al.Improved Differential Evolution Based on Stochastic Ranking for Robust Layout Synthesis of MEMS Components[J].IEEE Transactions on Industrial Electronics,2009,56(4):937-948.
[74]DAS S,NATARAJAN B,STEVENS D,et al.Multi-objectiveand constrained optimization for DS-CDMA code design based on the clonal selection principle[J].Applied Soft Computing,2008,8(1):788-797.
[75]KONSTANTINIDIS A,YANG K.Multi-objective K-connected Deployment and Power Assignment in WSNs using a problem-specific constrained evolutionary algorithm based on decomposition[J].Computer Communications,2011,34(1):83-98.
[76]PALMERS P,MCCONNAGHY T,STEYAERT M,et al.Massively multi-topology sizing of analog integrated circuits[C]//European Design and Automation Association.2009:706-711.
[77]LI X,YIN M.Optimal synthesis of linear antenna array with composite differential evolution algorithm[J].Scientia Iranica.Transaction D,Computer Science & Engineering,Electrical,2012,19(6):1780.
[78]SAIT S M,FAHEEMUDDIN M,MINHAS M R,et al.Multiobjective VLSI cell placement using distributed genetic algorithm[C]//Genetic And Evolutionary Computation Conference.2005:1585-1586.
[79]MASAZADE E,RAJAGOPALAN R,VARSHNEY P K,et al.A Multiobjective Optimization Approach to Obtain Decision Thresholds for Distributed Detection in Wireless Sensor Networks[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B(Cybernetics),2010,40(2):444-457.
[80]OYAMA A,SHIMOYAMA K,FUJII K.New Constraint-Handling Method for Multi-Objective and Multi-Constraint Evolutionary Optimization[J].Transactions of the Japan Society for Aeronautical & Space Sciences,2007,50(167):56-62.
[81]ERBATUR F,HASANÇEBI O,TÜTÜNCÜ Ï,et al.Optimal design of planar and space structures with genetic algorithms[J].Computers and Structures,2000,75(2):209-224.
[82]COELHO R F,BERSINI H,BOUILLARD P.Parametrical mechanical design with constraints and preferences:application to a purge valve[J].Computer Methods in Applied Mechanics and Engineering,2003,192(39):4355-4378.
[83]THOMPSON M P,HAMANN J D,SESSIONS J.Selection and Penalty Strategies for Genetic Algorithms Designed to Solve Spatial Forest Planning Problems[J].International Journal of Forestry Research,2009:1-14.
[84]HILTON A B,CULVER T B.Constraint-handling methods for optimal groundwater remediation design by genetic algorithms[C]//Systems Man And Cybernetics.1998:3937-3942.
[85]LAURA J,HARRELL S R R.Evaluation of Alternative Penalty Function Implementations in a Watershed Management Design Problem[C]//Conference on Genetic & Evolutionary Computation.1999:1551-1558.
[86]HILTON A B C,CULVER T B.Constraint Handling for Genetic Algorithms in Optimal Remediation Design[J].Journal of Water Resources Planning and Management,2000,126(3):128-137.
[87]SHIN S,LEE I,KIM D,et al.Multiobjective evolutionary optimization of DNA sequences for reliable DNA computing[J].IEEE Transactions on Evolutionary Computation,2005,9(2):143-158.
[88]HARTEMINK A J,GIFFORD D K,KHODOR J.Automated constraint-based nucleotide sequence selection for DNA computation[J].BioSystems,1999,52(1):227-235.
[89]ERBAS C,CERAV-ERBAS S,PIMENTEL A D.Multiobjective optimization and evolutionary algorithms for the application mapping problem in multiprocessor system-on-chip design[J].IEEE Transactions on Evolutionary Computation,2006,10(3):358-374.
[90]KODURU P,DONG Z,DAS S,et al.A Multiobjective Evolutionary-Simplex Hybrid Approach for the Optimization of Differential Equation Models of Gene Networks[J].IEEE Transactions on Evolutionary Computation,2008,12(5):572-590.
[91]SARAVANAN R,RAMABALAN S,EBENEZER N G R,et al.Evolutionary multi criteria design optimization of robot grippers[J].Applied Soft Computing Journal,2009,9(1):159-172.
[92]CASTILLO O,TRUJILLO L,MELIN P.Multiple Objective Genetic Algorithms for Path-planning Optimization in Autonomous Mobile Robots[J].Soft Computing,2007,11(3):269-279.
[93]LI Z W,HAO X H,ZHANG G J.Evolutionary algorithm of multi-level individual screening for protein structure prediction from scratch [J].Computer Science,2019,46(S1):80-84.
[94]LIU B,FAN R X,LIU H R,et al.Learning algorithm of Bayesian network structure based on hybrid Thaliacea differential evolution algorithm [J].Journal of Communications,2019,40(7):151-161.
[95]LIU D S,TAN K C,HUANG S Y,et al.On solving multiobjective bin packing problems using evolutionary particle swarm optimization[J].European Journal of Operational Research,2008,190(2):357-382.
[96]TAN K C,CHEONG C Y,GOH C K.Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computation[J].European Journal of Operational Research,2007,177(2):813-839.
[97]OMBUKI B,ROSS B J,HANSHAR F.Multi-Objective Genetic Algorithms for Vehicle Routing Problem with Time Windows[J].Applied Intelligence,2006,24(1):17-30.
[98]LIU J,YANG Y,TAN S,et al.Application of ConstrainedMulti-objective Evolutionary Algorithm in a Compressed-air Station Scheduling Problem[C]//Chinese Control Conference.2019:2023-2028.
[99]LAMONT G B,SLEAR J N,MELENDEZ K.UAV Swarm Mission Planning and Routing using Multi-Objective Evolutionary Algorithms[C]//IEEE Symposium on Computational Intelligence in Multicriteria Decision Making.IEEE,2007:10-20.
[100]BAKER B M,AYECHEW M A.A genetic algorithm for the vehicle routing problem[J].Computers and Operations Research,2003,30(5):787-800.
[101]ZHU K Q.A diversity-controlling adaptive genetic algorithm for the vehicle routing problem with time windows[C]//IEEE International Conference on Tools with Artificial Intelligence.2003:176-183.
[102]BANIAMERIAN A,BASHIRI M,TAVAKKOLI-MOGHADDAM R.Modified variable neighborhood search and genetic algorithm for profitable heterogeneous vehicle routing problem with cross-docking[J].Applied Soft Computing Journal,2019,75:441-460.
[103]IBARAKI T,IMAHORI S,KUBO M,et al.Effective LocalSearch Algorithms for Routing and Scheduling Problems with General Time-Window Constraints[J].Transportation Science,2005,39(2):206-232.
[104]WANG Z L,XIE T,HE K,et al.0-1 knapsack scheduling problem considering time factor[J].Computer science,2018,45(4):53-59.
[105]HE Y C,WANG X Z,LI W B,et al.Exact algorithm and evolutionary algorithm for solving stochastic time-varying knapsack problem [J].Journal of software,2017,28(2):185-202.
[106]ZHU Z Y,YANG Y,DENG X,et al.An efficient evolutionary algorithm for solving multi vehicle carps [J].Computer engineering and application,2008(8):212-216.
[107]ALI I M,ESSAM D,KASMARIK K,et al.An Efficient Differential Evolution Algorithm for Solving 0-1 Knapsack Problems[C]//Congress on Evolutionary Computation.2018:1-8.
[108]MARCONDES E J,ZANETTE B N,PERRONI P F,et al.Evolutionary Algorithms with Constraint Handling for the Hydroelectric Dispatch Planning[C]//2019 8th Brazilian Conference on Intelligent Systems(BRACIS).IEEE,2019:527-532.
[109]WANG J H,WENG T,ZHANG Q.A Two-Stage Multiobjective Evolutionary Algorithm for Multiobjective Multidepot Vehicle Routing Problem With Time Windows[J].IEEE Transactions on Cybernetics,2019,49(7):2467-2478.
[110]DEB K,CHAUDHURI S,MIETTINEN K.Towards estimating nadir objective vector using evolutionary approaches[C]//Genetic and Evolutionary Computation Conference(GECCO 2006).Seattle,Washington,USA,2006.
[1] 张清琪, 刘漫丹. 复杂网络社区发现的多目标五行环优化算法[J]. 计算机科学, 2020, 47(8): 284-290.
[2] 董明刚, 弓佳明, 敬超. 基于谱聚类的多目标进化社区发现算法研究[J]. 计算机科学, 2020, 47(6A): 461-466.
[3] 杨浩, 陈红梅. 基于量子进化算法的非平衡数据混合采样算法[J]. 计算机科学, 2020, 47(11): 88-94.
[4] 王瑄, 毛莺池, 谢在鹏, 黄倩. 基于差分进化的推断任务卸载策略[J]. 计算机科学, 2020, 47(10): 256-262.
[5] 谢腾宇,周晓根,胡俊,张贵军. 基于接触图残基对距离约束的蛋白质结构预测算法[J]. 计算机科学, 2020, 47(1): 59-65.
[6] 李章维, 郝小虎, 张贵军. 蛋白质结构从头预测多级个体筛选进化算法[J]. 计算机科学, 2019, 46(6A): 80-84.
[7] 肖鹏, 邹德旋, 张强. 一种高效动态自适应差分进化算法[J]. 计算机科学, 2019, 46(6A): 124-132.
[8] 耿焕同, 韩伟民, 周山胜, 丁洋洋. 一种基于新型邻域更新策略的MOEA/D算法[J]. 计算机科学, 2019, 46(5): 191-197.
[9] 金婷, 谭文安, 孙勇, 赵尧. 模糊多目标进化的社会团队形成方法[J]. 计算机科学, 2019, 46(2): 315-320.
[10] 刘鑫平, 顾春华, 罗飞, 丁炜超. 基于败者组与混合编码策略的NSGA-II改进算法[J]. 计算机科学, 2019, 46(10): 222-228.
[11] 赖文星, 邓忠民. 基于支配强度的NSGA2改进算法[J]. 计算机科学, 2018, 45(6): 187-192.
[12] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76-82.
[13] 单天羽, 管煜旸. 基于种群多样性的可变种群缩减差分进化算法[J]. 计算机科学, 2018, 45(11A): 160-166.
[14] 李伟琨,阙波,王万良,倪立洲. 基于多目标飞蛾算法的电力系统无功优化研究[J]. 计算机科学, 2017, 44(Z11): 503-509.
[15] 刘翱,邓旭东,李维刚. 基于自适应控制参数的改进水波优化算法[J]. 计算机科学, 2017, 44(7): 203-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[2] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[3] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[4] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[5] 杨羽琦,章国安,金喜龙. 车载自组织网络中基于车辆密度的双簇头路由协议[J]. 计算机科学, 2018, 45(4): 126 -130 .
[6] 施超,谢在鹏,柳晗,吕鑫. 基于稳定匹配的容器部署策略的优化[J]. 计算机科学, 2018, 45(4): 131 -136 .
[7] 庞博,金乾坤,合尼古力·吾买尔,齐兴斌. 软件定义网络中基于网络切片和ILP模型的路由方案[J]. 计算机科学, 2018, 45(4): 143 -147 .
[8] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[9] 张景,朱国宾. 基于CBOW-LDA主题模型的Stack Overflow编程网站热点主题发现研究[J]. 计算机科学, 2018, 45(4): 208 -214 .
[10] 翁理国,孔维斌,夏旻,仇学飞. 基于深度极限学习机的卫星云图云量计算[J]. 计算机科学, 2018, 45(4): 227 -232 .