计算机科学 ›› 2020, Vol. 47 ›› Issue (10): 41-47.doi: 10.11896/jsjkx.200700070
蔡威, 白光伟, 沈航, 成昭炜, 张慧丽
CAI Wei, BAI Guang-wei, SHEN Hang, CHENG Zhao-wei, ZHANG Hui-li
摘要: 移动群智感知系统需要为用户提供个性化隐私保护,以吸引更多用户参与任务。然而,由于恶意攻击者的存在,用户提升隐私保护力度会导致位置可用性变差,降低任务分配效率。针对该问题,提出了一种基于强化学习的用户与平台共赢的博弈机制。该机制首先通过可信第三方的两个虚拟实体分别模拟用户并与平台进行交互,一个模拟用户选择隐私预算为位置数据添加噪声,另一个模拟平台根据用户的扰动位置分配任务;然后,将交互过程构建为博弈,并推导出均衡点,其中交互的两个虚拟实体就是博弈双方;最后,使用强化学习方法不断尝试不同的位置扰动策略,输出一个最优的位置扰动方案。实验结果表明,该机制能在优化任务分配效用的同时,尽可能地提高用户的整体效用,使用户与平台达成双赢。
中图分类号:
[1]WANG L Y,ZHANG D Q,WANG Y S,et al.Sparse MobileCrowdsensing:Challenges and Opportunities[J].IEEE Communications Magazine,2016,54(7):161-167. [2]TANG Y,LIU R Q,YANG P L,et al.A Secure Task Allocation Technology Based on Crowd Sensing Network [J].Computer Engineering,2016,42(6):161-166. [3]GUO B,LIU Y,WU W L,et al.ActiveCrowd:A Framework for Optimized Multitask Allocation in Mobile Crowdsensing Systems[J].IEEE Transactions on Human-Machine Systems,2017,47(3):392-403. [4]LIU Y,GUO B,WANG Y,et al.TaskMe:Multi-Task Allocation in Mobile Crowd Sensing [C]//Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing.2016:403-414. [5]WANG L Y,ZHANG D Q,PATHAK A,et al.CCS-TA:Quality-Guaranteed Online Task Allocation in Compressive Crowdsensing[C]//Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing.2015:683-694. [6]QIAN Y F,JIANG Y Y,HOSSAIN M S,et al.Privacy-Preserving based Task Allocation with Mobile Edge Clouds[J].Information Sciences,2020,507:288-297. [7]LIU B,ZHOU W L,ZHU T Q,et al.Invisible Hand:A Privacy Preserving Mobile Crowd Sensing Framework Based on Economic Models[J].IEEE Transactions on Vehicular Technology,2016,66(5):4410-4423. [8]TO H,GHINITA G,SHAHABI C.A Framework for Protecting Worker Location Privacy in Spatial Crowdsourcing[J].Proceedings of the VLDB Endowment,2014,7(10):919-930. [9]POURNAJAF L,XIONG L,SUNDERAM V,et al.Spatial Task Assignment for Crowd Sensing with Cloaked Locations[C]//2014 IEEE 15th International Conference on Mobile Data Ma-nagement.IEEE,2014,1:73-82. [10]WANG T C,LIU Y,JIN X,et al.Research on K-Anonymity-Based Privacy Protection in Crowd Sensing[J].Journal on Communications,2018,39(A01):170-178. [11]LONG H,ZHANG S K,ZHANG L.Privacy Protection Method Based on Voronoi Cell in Crowd Sensing[J].Computer Engineering,2020,46(5):181-186,192. [12]DWORK C.Differential Privacy:A Survey of Results[C]//International Conference on Theory and Applications of Models of Computation.Springer,Berlin,Heidelberg,2008:1-19. [13]XIONG J B,MA R,CHEN L,et al.A Personalized Privacy Protection Framework for Mobile Crowdsensing in IIoT[J].IEEE Transactions on Industrial Informatics,2020,16(6):4231-4241. [14]WANG L Y,YANG D Q,HAN X,et al.Location Privacy-Preserving Task Allocation for Mobile Crowdsensing with Differential Geo-Obfuscation[C]//Proceedings of the 26th International Conference on World Wide Web.2017:627-636. [15]WANG Z B,HU J H,LV R Z,et al.Personalized Privacy-Preserving Task Allocation for Mobile Crowdsensing[J].IEEE Transactions on Mobile Computing,2019,18(6):1330-1341. [16]NIE J T,LUO J,XIONG Z H,et al.A Stackelberg Game Approach Toward Socially-Aware Incentive Mechanisms for Mobile Crowdsensing[J].IEEE Transactions on Wireless Communications,2019,18(1):724-738. [17]XIAO L,CHEN T H,XIE C X,et al.Mobile Crowdsensing Games in Vehicular Networks[J].IEEE Transactions on Vehi-cular Technology,2017,67(2):1535-1545. [18]ALSHEIKH M A,NIYATO D,LEONG D,et al.Privacy Mana-gement and Optimal Pricing in People-Centric Sensing[J].IEEE Journal on Selected Areas in Communications,2017,35(4):906-920. [19]CHATZIKOKOLAKIS K,ANDRÉS M E,BORDENABE N E,et al.Broadening the Scope of Differential Privacy Using Metrics[C]//International Symposium on Privacy Enhancing Technologies Symposium.Springer,Berlin,Heidelberg,2013:82-102. |
[1] | 马堉银, 郑万波, 马勇, 刘航, 夏云霓, 郭坤银, 陈鹏, 刘诚武. 一种基于深度强化学习与概率性能感知的边缘计算环境多工作流卸载方法[J]. 计算机科学, 2021, 48(1): 40-48. |
[2] | 毛莺池, 周彤, 刘鹏飞. 基于延迟接受的多用户任务卸载策略[J]. 计算机科学, 2021, 48(1): 49-57. |
[3] | 刘凌云, 钱辉, 邢红杰, 董春茹, 张峰. 一种基于Q-学习算法的增量分类模型[J]. 计算机科学, 2020, 47(8): 171-177. |
[4] | 刘君良, 李晓光. 个性化推荐系统技术进展[J]. 计算机科学, 2020, 47(7): 47-55. |
[5] | 郑帅, 罗飞, 顾春华, 丁炜超, 卢海峰. 基于双估计器的改进Speedy Q-learning算法[J]. 计算机科学, 2020, 47(7): 179-185. |
[6] | 黄锦灏, 丁钰真, 肖亮, 沈志荣, 朱珍民. 一种基于强化学习的嵌入式系统抗拒绝服务攻击的缓存调度方案[J]. 计算机科学, 2020, 47(7): 282-286. |
[7] | 刘青松, 陈建平, 傅启明, 高振, 陆悠, 吴宏杰. 一种新的基于函数逼近协同更新的DQN算法[J]. 计算机科学, 2020, 47(6A): 130-134. |
[8] | 李建军, 汪校铃, 杨玉, 付佳. 基于CQPSO移动群智感知紧急任务分配方法研究[J]. 计算机科学, 2020, 47(6A): 273-277. |
[9] | 包峻波, 闫光辉, 李俊成. 结合非完全信息博弈的SIR传播模型[J]. 计算机科学, 2020, 47(6): 230-235. |
[10] | 李虎, 方宝富. 基于积极团队情感基调的情感机器人协作任务分配拍卖算法[J]. 计算机科学, 2020, 47(4): 169-177. |
[11] | 唐文君,张佳丽,陈荣,郭世凯. 基于强化学习的Web服务众测任务分派方法[J]. 计算机科学, 2020, 47(3): 54-60. |
[12] | 杨惟轶,白辰甲,蔡超,赵英男,刘鹏. 深度强化学习中稀疏奖励问题研究综述[J]. 计算机科学, 2020, 47(3): 182-191. |
[13] | 孙浩,陈春林,刘琼,赵佳宝. 基于深度强化学习的交通信号控制方法[J]. 计算机科学, 2020, 47(2): 169-174. |
[14] | 李丽,郑嘉利,王哲,袁源,石静. 基于异步优势动作评价的RFID室内定位算法[J]. 计算机科学, 2020, 47(2): 233-238. |
[15] | 陈梦蓉,林英,兰微,单今朝. 基于“奖励制度”的DPoS共识机制改进[J]. 计算机科学, 2020, 47(2): 269-275. |
|