计算机科学 ›› 2022, Vol. 49 ›› Issue (6): 39-43.doi: 10.11896/jsjkx.211200143

• 6G 赋能智慧物联网技术与应用* 上一篇    下一篇

面向铁路集装箱的高可靠低时延无线资源分配算法

胥昊1,2, 曹桂均2, 闫璐1,3, 李科2, 王振宏2   

  1. 1 中国铁道科学研究院研究生部 北京 100081
    2 中国铁道科学研究院通信信号研究所 北京 100081
    3 中国铁道科学研究院科技和信息化部 北京 100081
  • 收稿日期:2021-12-13 修回日期:2022-03-11 出版日期:2022-06-15 发布日期:2022-06-08
  • 通讯作者: 闫璐(dickxh@163.com)
  • 作者简介:(18612113434@163.com)
  • 基金资助:
    国家自然科学基金(U1834211);中国铁道科学研究院集团有限公司科研课题(2021YJ101)

Wireless Resource Allocation Algorithm with High Reliability and Low Delay for Railway Container

XU Hao1,2, CAO Gui-jun2, YAN Lu1,3, LI Ke2, WANG Zhen-hong2   

  1. 1 Postgraduate Department,China Academy of Railway Sciences,Beijing 100081,China
    2 Signal and Communication Research Institute,China Academy of Railway Sciences,Beijing 100081,China
    3 Science and Information Technology Department,China Academy of Railway Sciences,Beijing 100081,China
  • Received:2021-12-13 Revised:2022-03-11 Online:2022-06-15 Published:2022-06-08
  • About author:XU Hao,born in 1983,Ph.D,associate researcher.His main research interests include high speed railway communication system and synthetic automation of marshalling yard.
    YAN Lu,born in 1982,Ph.D,associate researcher.Her main research interests include railway signal and communication,comprehensive dispatching technology.
  • Supported by:
    National Natural Science Foundation of China(U1834211) and Key Programs of Technological R&D of China Academy of Railway Sciences(2021YJ101).

摘要: 智能集装箱系统通过信息的实时采集和传输,提高了集装箱的运转效率。为了保证集装箱终端的超可靠低时延通信,文中提出以短包的形式传输信息,研究多小区铁路集装箱终端上行传输系统的和速率最大化问题,提出了一个频谱资源分配策略,多个小区间共用频谱资源,小区内的终端通过竞争获取频谱。首先,采用博弈论模型构建这种竞争关系,并证明了纳什均衡解的存在,其最好的纳什均衡解就是系统和速率最大化的全局最优解;然后,设计了一种分布式迭代算法,该算法只需要局部信息交互,并在理论上证明了当平滑系数足够小时,算法能以任意高的概率收敛到最好的纳什均衡点;最后,对所提算法进行了仿真验证。仿真结果表明,所提算法的收敛速度较快,且优于BRD算法和No-regret算法。

关键词: 博弈论, 超可靠低时延, 短包, 纳什均衡解, 频谱资源分配

Abstract: The intelligent container system improves the container operation efficiency through the real-time collection and transmission of information.In order to ensure the ultra reliable and low delay communication of container terminals,this paper pro-poses to transmit the information in the form of the short packets,and studies the sum rate maximization of the uplink transmission system for the railway container terminals in the multi cells.This paper proposes a spectrum resource allocation problem.Multiple cells share spectrum resources,and the terminals in the cells obtain the spectrum through competition.The game theory model is used to construct this competition relationship,and Nash equilibrium solution is proved.The best Nash equilibrium solution is the global optimal solution for system and rate maximization.Then,a distributed iterative algorithm is designed,which only needs local information interaction.It is proved theoretically that when the smoothing coefficient is small enough,the algorithm can converge to the best Nash equilibrium point with any high probability.Finally,the proposed algorithm is verified by simulation.Simulation results show that the proposed algorithm has fast convergence speed and is better than best response dynamics(BRD) algorithm and No-regret algorithm.

Key words: Game theory, Nash equilibrium solution, Short packets, Spectrum resource allocation, Ultra reliable and low delay

中图分类号: 

  • TN911
[1] LI Y H.Analysis of Key Technologies of Intelligent Container Internet of Things System[J].China Automatic Identification Technology,2019,80(5):48-52.
[2] LI Z.Study on optimization of empty container transport in multimodal transport of containers[J].International Core Journal of Engineering,2020,6(2):28-36.
[3] LIU Q F.A Tentative Study on the Development Strategy of Railway Container Transportation[J].Railway Transport and Economy,2020,42(9):34-39.
[4] HUANG M Z,LI G H,LIN X L,et al.Convergence Applicationof Railway Logistics and Blockchain[J].Railway Computer Application,2020,29(3):11-14.
[5] CHO S Y,CHAE M S,SHIN K H.Reliability analysis of the integrated navigation system based on real trajectory and calculation of safety margin between trains[J].IEEE Access,2021,9:32986-32996.
[6] YOU X H,YIN H,WU H Q.On 6G and Wide-Area IoT[J].Chinese Journal on Internet of Things,2020,4(1):3-11.
[7] YOU X H,WANG C X,HUANG J,et al.Towards 6G wireless communication networks:vision,enabling technologies,and new paradigm shifts[J].Science China(Information Sciences),2021,64(1):5-78.
[8] ZENG Y,XU X.Toward environment-aware 6G communica-tions via channel knowledge map[J].IEEE Wireless Communications,2021,28(3):84-91.
[9] YAN L,FANG X,HAO L,et al.Safety oriented resource allocation for space-ground integrated cloud networks of high-speed railways[J].IEEE Journal on Selected Areas in Communications,2020,8(12):47-2759.
[10] ZHOU C X,LEE B K,LI H B.Integrated optimization on yard crane scheduling and vehicle positioning at container yards[J].Transportation Research Part E:Logistics and Transportation Review,Elsevier,2020,38(C):663-688.
[11] JAAFAR S N,HAMZA K E,AL-SALIHI V A.Proposed base-station location optimization with genetic algorithm scheme for LTE network radio planning[J].IOP Conference Series:Mate-rials Science and Engineering,2021,1094(1):1-10.
[12] HO C D,NGUYEN T V,THE T H,et al.Short-packet communications in wireless-powered cognitive IoT networks:perfor-mance analysis and deep learning evaluation[J].IEEE Transactions on Vehicular Technology,2021,70(3):2894-2899.
[13] CHOI J,PARKJ.MIMO design for internet of things:joint optimization of spectral efficiency and error probability in finite blocklength regime[J] IEEE Internet of Things Journal,2021,8(20):15512-15521.
[14] SALEHI F,NEDA N,MAJIDI M H,et al.Max-Min Fairness with Selection Combining Strategy on Cooperative NOMA:A Finite Blocklength Analysis[C]//2021 Joint European Confe-rence on Networks and Communications & 6G Summit(EuCNC/6G Summit).2021:43-48.
[15] HU Y,SERROR M,WEHRLE K,et al.Finite blocklength performance of cooperative multi-terminal wireless industrial networks[J].IEEE Transactions on Vehicular Technology,2018,67(7):5778-5792.
[16] YANG W,DURISI G,KOCH T,et al.Quasi-static multiple-antenna fading channels at finite blocklength[J].IEEE Transactions on Information Theory,2014,60(7):4232-4265.
[17] MONDERER D,SHAPLEY L S.Potential games[J].Gamesand Economic Behavior,1996,14(1):124-143.
[18] FLEISCHHACKER A,CORINALDESI C,LETTNER G,et al.Stabilizing energy communities through energy pricing or PV expansion[J].IEEE Transactions on Smart Grid,2022,13(1):728-737.
[19] LI K.How to stabilize a competitive mobile edge computing environment:a game theoretic approach[J].IEEE Access,2019,7:69960-69985.
[20] CHEN X,WU C,CHEN T,et al.Information freshness-awaretask offloading in air-ground integrated edge computing systems[J].IEEE Journal on Selected Areas in Communications,2022,40(1):243-258.
[21] ACCESS E U T R.Further Advancements for E-UTRA Phy-sical Layer Aspects:3GPP TR 36.814,Tech.Rep.[S].2010.
[22] BUZZI S,COLAVOLPE G,SATURNINO D,et al.Potentialgames for energy-efficient power control and subcarrier allocation in uplink multicell OFDMA systems[J].IEEE Journal of Selected Topics in Signal Processing,2012,6(2):89-103.
[23] LHAZMIR S,OUALHAJ O A,KOBBANE A,et al.Matching game with no-regret learning for IoT energy-efficient associations with UAV[J].IEEE Transactions on Green Communications and Networking,2020,4(4):973-981.
[1] 姜洋洋, 宋丽华, 邢长友, 张国敏, 曾庆伟.
蜜罐博弈中信念驱动的攻防策略优化机制
Belief Driven Attack and Defense Policy Optimization Mechanism in Honeypot Game
计算机科学, 2022, 49(9): 333-339. https://doi.org/10.11896/jsjkx.220400011
[2] 方韬, 杨旸, 陈佳馨.
D2D辅助移动边缘计算下的卸载策略优化
Optimization of Offloading Decisions in D2D-assisted MEC Networks
计算机科学, 2022, 49(6A): 601-605. https://doi.org/10.11896/jsjkx.210200114
[3] 魏礼奇, 赵志宏, 白光伟, 沈航.
基于生成对抗网络的位置隐私博弈机制
Location Privacy Game Mechanism Based on Generative Adversarial Networks
计算机科学, 2021, 48(10): 266-271. https://doi.org/10.11896/jsjkx.200900021
[4] 毛莺池, 周彤, 刘鹏飞.
基于延迟接受的多用户任务卸载策略
Multi-user Task Offloading Based on Delayed Acceptance
计算机科学, 2021, 48(1): 49-57. https://doi.org/10.11896/jsjkx.200600129
[5] 包峻波, 闫光辉, 李俊成.
结合非完全信息博弈的SIR传播模型
SIR Propagation Model Combing Incomplete Information Game
计算机科学, 2020, 47(6): 230-235. https://doi.org/10.11896/jsjkx.190400164
[6] 陈梦蓉,林英,兰微,单今朝.
基于“奖励制度”的DPoS共识机制改进
Improvement of DPoS Consensus Mechanism Based on Positive Incentive
计算机科学, 2020, 47(2): 269-275. https://doi.org/10.11896/jsjkx.190400013
[7] 王帅辉, 胡谷雨, 潘雨, 张志越, 张海峰, 潘志松.
基于博弈论的符号网络社团发现算法
Community Detection in Signed Networks with Game Theory
计算机科学, 2020, 47(11A): 449-453. https://doi.org/10.11896/jsjkx.200200049
[8] 翟永, 刘津, 刘磊, 陈杰.
基于博弈论的空间数据中心私有云资源分配管理分析
Analysis of Private Cloud Resource Allocation Management Based on Game Theory in Spatial Data Center
计算机科学, 2020, 47(11A): 373-379. https://doi.org/10.11896/jsjkx.200500106
[9] 蔡威, 白光伟, 沈航, 成昭炜, 张慧丽.
移动群智感知中基于强化学习的双赢博弈
Reinforcement Learning Based Win-Win Game for Mobile Crowdsensing
计算机科学, 2020, 47(10): 41-47. https://doi.org/10.11896/jsjkx.200700070
[10] 刘海波,武天博,沈晶,史长亭.
基于GAN-LSTM的APT攻击检测
Advanced Persistent Threat Detection Based on Generative Adversarial Networks and Long Short-term Memory
计算机科学, 2020, 47(1): 281-286. https://doi.org/10.11896/jsjkx.181102103
[11] 杜威, 丁世飞.
多智能体强化学习综述
Overview on Multi-agent Reinforcement Learning
计算机科学, 2019, 46(8): 1-8. https://doi.org/10.11896/j.issn.1002-137X.2019.08.001
[12] 徐飞, 王少昌, 杨卫霞.
基于博弈论的云资源调度算法
Cloud Resource Scheduling Algorithm Based on Game Theory
计算机科学, 2019, 46(6A): 295-299.
[13] 李方伟, 黄旭, 张海波, 刘开健, 贺晓帆.
D2D网络中基于分簇的无线资源分配机制
Cluster-based Radio Resource Allocation Mechanism in D2D Networks
计算机科学, 2018, 45(9): 123-128. https://doi.org/10.11896/j.issn.1002-137X.2018.09.019
[14] 刘景玮, 刘京菊, 陆余良, 杨斌, 朱凯龙.
基于网络攻防博弈模型的最优防御策略选取方法
Optimal Defense Strategy Selection Method Based on Network Attack-Defense Game Model
计算机科学, 2018, 45(6): 117-123. https://doi.org/10.11896/j.issn.1002-137X.2018.06.020
[15] 尹翔,常丽萍,戴维超,李春晓.
一种优化的基于博弈论的无线传感器网络区域分簇算法
Optimized Clustering Wireless Sensor Network Algorithm Based on Game Theory
计算机科学, 2017, 44(3): 123-127. https://doi.org/10.11896/j.issn.1002-137X.2017.03.027
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!