计算机科学 ›› 2021, Vol. 48 ›› Issue (6A): 608-612.doi: 10.11896/jsjkx.200800134

• 交叉&应用 • 上一篇    下一篇

LDPC自适应最小和译码算法及其FPGA实现

王登天1, 周华1,2,3, 钱荷玥1   

  1. 1 南京信息工程大学 南京210044
    2 江苏省大气环境与装备技术协同创新中心 南京210044
    3 江苏省气象探测与信息处理重点实验室 南京210044
  • 出版日期:2021-06-10 发布日期:2021-06-17
  • 通讯作者: 王登天(1014765180@qq.com)
  • 基金资助:
    国家自然科学基金面上项目(61771248)

LDPC Adaptive Minimum Sum Decoding Algorithm and Its FPGA Implementation

WANG Deng-tian1, ZHOU Hua1,2,3, QIAN He-yue1   

  1. 1 Nanjing University of Information Technology,Nanjing 210044,China
    2 Jiangsu Collaborative Innovation Center for Atmospheric Environment and Equipment Technology,Nanjing 210044,China
    3 Jiangsu Key Laboratory of Meteorological Observation and Information Processing,Nanjing 210044,China
  • Online:2021-06-10 Published:2021-06-17
  • About author:WANG Deng-tian,born in 1995,master.His main research interests include information theory and coding.
  • Supported by:
    General Project of the National Natural Science Foundation of China(61771248).

摘要: 低密度奇偶校验码(Low-density Parity-check,LDPC)置信传播算法性能优异且被证明接近香农极限,但需要极其复杂的对数和三角函数运算,不利于现实使用。尽管最小和算法提高了计算的方便性和适用性,但也削弱了其译码能力。为了减少误码率(Bit Error Rate,BER)的损失,利用输入变量节点边信息绝对值的最小值、次小值和双曲正切函数的关系,引入自适应乘性因子提升算法性能。仿真结果显示,自适应最小和算法的性能比传统的对数似然比置信传播算法(Log-Likelihood Ratio Belief Propagation,LLR BP)提升了0.2 dB。此外,通过在Xilinx公司的FPGA平台上进行硬件测试,实现了155码长的LDPC码最小和算法仿真。

关键词: FPGA实现, LDPC码, 算法性能, 自适应乘性因子, 自适应最小和算法

Abstract: The belief propagation(BP) decoding algorithm for low-density parity-check (LDPC) codes has been shown to approach the Shannon limit,however it requires extremely complex logarithmic and trigonometric functions,which is not of practical interest.The minimum sum (MS) algorithm improves the convenience speed and simplifies the calculation at the expense of loss in decoding performance.In order to reduce the loss in bit error rate (BER),this paper introduce an adaptive multiplicative factor which considers the relationship between the absolute value of the input variable node side information,the second smallest value and the hyperbolic tangent function.As a result,the performance of the proposed adaptive MS algorithm is 0.2dB superior to the traditional LLR (Log-Likelihood Ratio) BP algorithm.Also,LDPC codes of 155 lengths are implemented based on the Xilinx FPGA platform.

Key words: Adaptive minimum sum algorithm, Adaptive multiplicative factor, Algorithm performance, FPGA implementation, LDPC code

中图分类号: 

  • TN919.3
[1] 王琼,李思舫,罗亚洁.LDPC码的自适应补偿最小和译码算法[J].电讯术,2019,59(6):635-640.
[2] 杨卫国.基于减少过估计的改进LDPC码最小和译码算法[J].指挥控制与仿真,2017,39(6):53-57.
[3] GALLAGER R.Low-density parity-check codes[J].journal of circuits & systems,2008,8(1):3-26.
[4] 张玉凯.准循环LDPC码的编译码器设计及FPGA实现[D].西安:西安电子科技大学,2009.
[5] CHEN J H,DHOLAKIA A,ELEFTHERIOU E.Reduced-Complexity Decoding of LDPC Codes[J].Communications IEEE Transactions on,2005,53(8):1288-1299.
[6] ANGARITA F,VALLS J,ALMENAR V,et al.Reduced-Complexity Min-Sum Algorithm for Decoding LDPC Codes With Low Error-Floor[J].Circuits and Systems I:Regular Papers,IEEE Transactions on,2014,61(7):2150-2158.
[7] 姜莹.基于FPGA的高效LDPC译码器的研究[D].北京:北京交通大学,2014.
[8] 韩家宇.基于FPGA的LDPC码编译码研究及硬件实现[D].哈尔滨:哈尔滨工程大学,2017.
[9] VITYAZEVV V,LIKHOBABIN E A,USTINOVA E A.Min-sum algorithm-structure based decoding algorithms for LDPC codes[C]//2014 3rd Mediterranean Conference on Embedded Computing(EMCO).2014:256-259.
[10] 马志刚,郑鹏宇,王亚军.QC-LDPC译码器的FPGA设计实现与分析[J].现代导航,2017,8(3):204-209.
[11] 袁瑞佳.LDPC码的高效编译码实现技术研究[D].西安:西安电子科技大学,2012.
[12] LI H,DING H,ZHENG L,et al.An efficient scheduling scheme for layered belief propagation decoding of regular LDPC codes[C]//International Conference on Ultra Modern Telecommunications.2016:397-400.
[13] 黄福威.5G-LDPC码编译码器设计与FPGA实现技术研究[D].西安:西安电子科技大学,2019.
[14] 张辉.基于FPGA的LDPC译码器硬件实现方法研究[D].哈尔滨:哈尔滨工业大学,2019.
[15] 李硕.基于FPGA的QC-LDPC编译码器研究[D].哈尔滨:哈尔滨理工大学,2015.
[1] 谢宸琪, 张保稳, 易平.
人工智能模型水印研究综述
Survey on Artificial Intelligence Model Watermarking
计算机科学, 2021, 48(7): 9-16. https://doi.org/10.11896/jsjkx.201200204
[2] 杨雪菲, 郑东, 任方.
一种基于QC-LDPC码的数字签名算法
Digital Signature Algorithm Based on QC-LDPC Code
计算机科学, 2019, 46(6): 162-167. https://doi.org/10.11896/j.issn.1002-137X.2019.06.024
[3] 刘华军, 唐诗迪, 张迪科, 夏巧桥.
基于查找表的ADMM译码算法中量化算法优化研究
Study on Optimization of Quantization Algorithm in ADMM Decoding Algorithm Based on Lookup Table
计算机科学, 2019, 46(11): 328-333. https://doi.org/10.11896/jsjkx.181001871
[4] 孟嘉慧, 赵旦峰, 田海.
面向5G的多元LDPC改进译码算法的仿真研究
Simulation Research on Improved Decoding Algorithm Based on Non-binary LDPC for 5G
计算机科学, 2018, 45(9): 141-145. https://doi.org/10.11896/j.issn.1002-137X.2018.09.022
[5] 李浪,刘波涛.
Surge:一种新型、低资源、高效的轻量级分组密码算法
Surge:A New Low-resource and Efficient Lightweight Block Cipher
计算机科学, 2018, 45(2): 236-240. https://doi.org/10.11896/j.issn.1002-137X.2018.02.041
[6] 李浪,邹祎,贺位位,李仁发,刘波涛.
一种轻量级TWINE密码硬件优化实现研究
Research on Hardware Optimization Implementation of TWINE
计算机科学, 2015, 42(2): 127-130. https://doi.org/10.11896/j.issn.1002-137X.2015.02.027
[7] 牛和昊,何元智.
有限长度LDPC码一种速率兼容删余算法
Rate-compatible Puncturing Algorithm for Finite-length LDPC Codes
计算机科学, 2013, 40(Z11): 29-31.
[8] 孙蓉 刘景伟 王新梅.
基于流星余迹通信系统的低密度校验码的分析设计

计算机科学, 2008, 35(4): 78-81.
[9] .
二次同余序列构造规则LDPC码

计算机科学, 2006, 33(6): 291-292.
[10] 吴堃 戴菡 周竞扬 陆桑璐 陈道蓄 谢立.
分布式死锁检测算法中伪死锁率的研究和改进

计算机科学, 2005, 32(6): 193-198.
[11] 刘勤让 邬江兴.
基于FPGA实现的10Gbps高速转发引擎设计分析

计算机科学, 2005, 32(6): 14-17.
[12] .
最大熵模型的树-栅格最优N解码算法

计算机科学, 2005, 32(10): 167-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!