计算机科学 ›› 2021, Vol. 48 ›› Issue (8): 150-156.doi: 10.11896/jsjkx.200800221

• 计算机图形学& 多媒体 • 上一篇    下一篇

基于Graph Cuts多特征选择的双目图像分割方法

金海燕1,2, 彭晶1, 周挺1, 肖照林1,2   

  1. 1 西安理工大学计算机科学与工程学院 西安710048
    2 陕西省网络计算与安全技术重点实验室 西安710048
  • 收稿日期:2020-08-30 修回日期:2020-09-27 发布日期:2021-08-10
  • 通讯作者: 肖照林(xiaozhaolin@xaut.edu.cn)
  • 基金资助:
    国家自然科学基金(61871319);陕西省技术创新引导计划(2020CGXNG-026)

Binocular Image Segmentation Based on Graph Cuts Multi-feature Selection

JIN Hai-yan1,2, PENG Jing1, ZHOU Ting1, XIAO Zhao-lin1,2   

  1. 1 School of Computer Science and Engineering,Xi'an University of Technology,Xi'an 710048,China;
    2 Shaanxi Key Laboratory for Network Computing and Security Technology,Xi'an 710048,China
  • Received:2020-08-30 Revised:2020-09-27 Published:2021-08-10
  • About author:JIN Hai-yan,born in 1976,Ph.D,professor,Ph.D supervisor,is a member of China Computer Federation.Her main researchinterests include computer vision,image processing,intelligent information processing and so on.(jinhaiyan@xaut.edu.cn)XIAO Zhao-lin,born in 1984,Ph.D,associate professor,is a member of China Computer Federation.His main research interests include computer vision,computational photography and so on.
  • Supported by:
    National Natural Science Foundation of China(61871319) and Shaanxi Province Technical Innovation Guidance Special (2020CGXNG-026).

摘要: 双目图像分割对后续立体目标合成与三维重建等应用至关重要。由于双目图像中包含场景深度信息,因此直接将单目图像分割方法应用于双目图像尚不能得到理想的分割结果。目前,大多数双目图像分割方法将双目图像的深度特征作为颜色特征的额外通道来使用,仅对颜色特征与深度特征做简单整合,未能充分利用图像的深度特征。文中基于多分类Graph Cuts框架,提出了一种交互式双目图像分割方法。该方法将颜色、深度和纹理等特征融合到一个图模型中,以更充分地利用不同特征信息。同时,在Graph Cuts框架中引入了特征空间邻域系统,增强了图像前景区域与背景区域内部像素点之间的关系,提高了分割目标的完整性。实验结果表明,所提方法有效提升了双目图像分割结果的精确度。

关键词: 双目立体视觉, 双目图像, Graph cuts, 图像分割

Abstract: Binocular image segmentation is crucial for subsequent applications such as stereoscopic object synthesis and 3D reconstruction.Since binocular images contain scene depth information,it is difficult to obtain ideal segmentation results by applying monocular image segmentation methods to binocular images directly.At present,most binocular image segmentation methods use the depth feature of the binocular image as an additional channel for the color feature.Only the color feature and the depth feature are simply integrated,and the depth feature of the image cannot be fully utilized.Based on the multi-class Graph Cuts framework,this paper proposes an interactive binocular image segmentation method.Combining features such as color,depth and texture into a graph model can make full use of different feature information.At the same time,the feature space neighborhood system is introduced in the Graph Cuts framework,which enhances the relationship between the pixels in the foreground and background areas of the image,and improves the integrity of the segmentation target.Experimental results show that the proposed method improves the accuracy of binocular image segmentation results effectively.

Key words: Binocular stereo vision, Binocular image, Graph cuts, Image segmentation

中图分类号: 

  • TP391.4
[1]KOLMOGOROV V,ZABIN R.What energy functions can beminimized via graph cuts[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(2):147-159.
[2]BOYKOV Y,KOLMOGOROV V.An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(9):1124-1137.
[3]LIANG L M,HUANG C L,SHI F.Horizontal set of fusion shape priori for fundus image vascular segmentation[J].Journal of Computer Science,2018,41(7):1678-1692.
[4]ZHU Z L,LIU Y J.Fusion chaos optimization and improvedfuzzy clustering for image segmentation algorithm[J].Electronic Journals,2020,48(5):975-984.
[5]LI Y,CHEN X,ZHU Z,et al.Attention-Guided Unified Network for Panoptic Segmentation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).2019:7019-7028.
[6]ZHANG Z L,LI A H,CHU W.Hyperpixel segmentation algorithm based on density peak search clustering[J].Chinese Journal of Computers,2020,43(1):1-15.
[7]QIN H F,LIU X.Finger Vein Image Segmentation Based onSparse Auto-Encoder[J].Journal of Chongqing Technology and Business University(Natural Science Edition),2019,36(4):1-8.
[8]HE T,GUO Y G,XIN C H.ACM selection system combined with improved Chan-Vese model adaptive image segmentation method[J].Journal of Chongqing University of Technology (Natural Science),2020,34(2):165-173.
[9]YANG Z,WANG J,XIN C H.Automatic Segmentation andClassification of MR Images Using DCE-MRI Combined with Improved Convolutional Neural Network[J].Journal of Chongqing University of Technology (Natural Science),2020,34(2):147-157.
[10]WANG R H,LI B,TENG Q Z.Core FIB-SEM Image Segmentation Algorithm Based on Convolutional Neural Network[J].Computer Engineering,2021,47(1):264-274.
[11]LI P,CHEN J Q,MA W M,et al.Sonar Image Segmentation Based on Multiscale Features in Contourlet Domain[J].Computer Engineering,2019,45(9):253-259.
[12]PRICE B L,MORSE B S,COHEN S.LIVEcut:Learning-basedinteractive video segmentation by evaluation of multiple propagated cues[C]//Proceedings of the 2009 IEEE 12th Internatio-nal Conference on Computer Vision.Kyoto.2009:779-786.
[13]SUN C,LU H.Interactive Video Segmentation via Local Ap-pearance Model [J].IEEE Transactions on Circuits and Systems for Video Technology.2017,27(7):1491-1501.
[14]ZHOU C,LIU C.Co-segmentation of multiple similar imagesusing saliency detection and region merging [J].Iet Computer Vision,2014,8(3):254-261.
[15]LI Y,ZHANG J,GAO P,et al.Grab Cut Image Segmentation Based on Image Region[C]//2018 IEEE 3rd International Conference on Image,Vision and Computing(ICIVC).2018:311-315.
[16]BATRA D,KOWDLE A,PARIKH D,et al.iCoseg:Interactive co-segmentation with intelligent scribble guidance[C]//Procee-dings of the 2010 IEEE Computer Society Conference on Compu-ter Vision and Pattern Recognition.2010:3169-3176.
[17]LI Z,LIU J,YANG Y,et al.Clustering-Guided Sparse Structu-ral Learning for Unsupervised Feature Selection[J].IEEE Transactions on Knowledge and Data Engineering,2014,26(9):2138-2150.
[18]LI Z,TANG J.Unsupervised Feature Selection via Nonnegative Spectral Analysis and Redundancy Control[J].IEEE Transactions on Image Processing,2015,24(2):5343-5355.
[19]LI X,ZHANG H,ZHANG R,et al.Discriminative and Uncorre-lated Feature Selection with Constrained Spectral Analysis in Unsupervised Learning[J].IEEE Transactions on Image Processing,2020,29:2139-2149.
[20]LO W Y,BAAR J V,KNAUS C,et al.Stereoscopic 3D Copy & Paste[J].Acm Transactions on Graphics.2010,29(6):147.
[21]PRICE B L,COHEN S.StereoCut:Consistent interactive object selection in stereo image pairs[C]//Proceedings of the 2011 International Conference on Computer Vision.Barcelona,2011:1148-1155.
[22]JU R,XU X,YANG Y,et al.Stereo GrabCut:Interactive and Consistent Object Extraction for Stereo Images[C]//Procee-dings of the Advances in Multimedia Information Processing(PCM 2013).2013:418-429.
[23]MA W,YANG L,ZHANG Y,et al.Fast interactive stereoimage segmentation[J].Multimedia Tools and Applications,2016,75(18):10935-10948.
[24]MA W,QIN Y,YANG L,et al.Interactive Stereo Image Seg-mentation with RGB-D Hybrid Constraints[J].IEEE Signal Processing Letters,2016,23(11):1533-1537.
[25]PENG J,SHEN J,LI X.High-Order Energies for Stereo Seg-mentation[J].IEEE Transactions on Cybernetics,2016,46(7):1616-1627.
[26]JU R,REN T,WU G.StereoSnakes:Contour Based Consistent Object Extraction for Stereo Images[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV).2015:1724-1732.
[27]BOYKOV Y Y,JOLLY M.Interactive graph cuts for optimalboundary & region segmentation of objects in N-D images[C]//Proceedings of the Eighth IEEE International Conference on Computer Vision(ICCV 2001).2001:105-112.
[28]ZHANG K,FANG Y,MIN D,et al.Cross-scale cost aggregation for stereo matching[J].IEEE Transactions on Circuits and Systems for Video Technology.2017,27(5):965-976.
[29]ARBELÁEZ P,MAIRE M,FOWLKES C,et al.Contour Detection and Hierarchical Image Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(5):898-916.
[1] 叶中玉, 吴梦麟. 融合时序监督和注意力机制的脉络膜新生血管分割[J]. 计算机科学, 2021, 48(8): 118-124.
[2] 许华杰, 张晨强, 苏国韶. 基于深层卷积残差网络的航拍图建筑物精确分割方法[J]. 计算机科学, 2021, 48(8): 169-174.
[3] 杨秀璋, 武帅, 夏换, 于小民. 基于自适应图像增强技术的水族文字提取与识别研究[J]. 计算机科学, 2021, 48(6A): 74-79.
[4] 杨志伟, 戴铭, 周智恒. 基于直方图差异的工业产品表面缺陷检测方法[J]. 计算机科学, 2020, 47(6A): 247-249.
[5] 曹义亲, 段也钰, 武丹. 基于WFSOA的2D-Otsu钢轨缺陷图像分割方法[J]. 计算机科学, 2020, 47(5): 154-160.
[6] 饶梦,苗夺谦,罗晟. 一种粗糙不确定的图像分割方法[J]. 计算机科学, 2020, 47(2): 72-75.
[7] 雷涛,连倩,加小红,刘鹏. 基于快速SLIC的图像超像素算法[J]. 计算机科学, 2020, 47(2): 143-149.
[8] 周岳勇,程江华,刘通,王洋,陈明辉. 高分辨率SAR图像道路提取综述[J]. 计算机科学, 2020, 47(1): 124-135.
[9] 王嫣然, 陈清亮, 吴俊君. 面向复杂环境的图像语义分割方法综述[J]. 计算机科学, 2019, 46(9): 36-46.
[10] 刘长齐, 邵堃, 霍星, 范冬阳, 檀结庆. 基于加权质量评价函数的K-means图像分割算法[J]. 计算机科学, 2019, 46(6A): 158-160.
[11] 周小龙, 陈小佳, 陈胜勇, 雷帮军. 弱监督学习下的目标检测算法综述[J]. 计算机科学, 2019, 46(11): 49-57.
[12] 辜卫东, 李兵. 基于随机区域合并的自动彩色图像分割算法[J]. 计算机科学, 2018, 45(9): 279-282.
[13] 张新明, 程金凤, 康强, 王霞. 改进的混合蛙跳算法及其在多阈值图像分割中的应用[J]. 计算机科学, 2018, 45(8): 54-62.
[14] 仇国庆, 熊耕耘, 赵文铭. 一种改进的三维Otsu图像分割算法[J]. 计算机科学, 2018, 45(8): 247-252.
[15] 刘庆烽, 刘哲, 宋余庆, 朱彦. 基于约束随机游走的肿瘤图像分割方法[J]. 计算机科学, 2018, 45(7): 243-247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王振武,吕小华,韩晓辉. 基于四叉树分割的地形LOD技术综述[J]. 计算机科学, 2018, 45(4): 34 -45 .
[2] 赵培海, 王咪咪. 基于三维行为关系图的模型一致性检测方法[J]. 计算机科学, 2018, 45(6): 156 -160 .
[3] 姚寒冰,邢娜娜,周俊伟,李勇华. 支持结果排序的安全密文检索方法研究[J]. 计算机科学, 2018, 45(5): 123 -130 .
[4] 张文华,张明慧,郭义昊,卢振泰,刘颖. 拟合精度引导的扩散加权图像配准[J]. 计算机科学, 2018, 45(5): 243 -249 .
[5] 高航,慕晓冬,易昭湘,仝彤,袁覃恩. 流星余迹通信网络的路由算法[J]. 计算机科学, 2018, 45(7): 84 -89 .
[6] 朱瑞超,钱文华,普园媛,徐丹. 自相似性匹配的纹理合成[J]. 计算机科学, 2018, 45(6A): 215 -219 .
[7] 夏扬波, 杨文忠, 张振宇, 王庆鹏, 石研. 一种移动无线传感器网络的节点位置预测方法[J]. 计算机科学, 2018, 45(8): 113 -118 .
[8] 杨子薇, 郑嘉利, 岳世彬, 袁源, 石静. 基于标签分组的新型Q值防碰撞算法[J]. 计算机科学, 2018, 45(9): 152 -155 .
[9] 王硕,孙光明,邹静昭,李伟生. 基于用户推荐影响度的并行协同过滤算法[J]. 计算机科学, 2017, 44(9): 250 -255 .
[10] 鲁尔洁,陈峦,李坚,黄琦,张真源,井实,周统汉. 服务于风电系统的改进缓存替换算法研究[J]. 计算机科学, 2017, 44(9): 230 -233 .