计算机科学 ›› 2021, Vol. 48 ›› Issue (8): 334-339.doi: 10.11896/jsjkx.201000036
• 人机交互 • 上一篇
高岩, 闫秋艳, 夏士雄, 张紫涵
GAO Yan, YAN Qiu-yan, XIA Shi-xiong, ZHANG Zi-han
摘要: 传统的课堂行为识别方法侧重于交互行为本身的辨识,而非群体发现。课堂环境下实现交互群体的准确定位与发现,是进行个体行为识别的基础,但存在由遮挡造成的行为数据缺失问题。使用骨骼数据表示人体行为及运动轨迹,具有不受光线和背景干扰、数据表达简单等优点。针对骨骼数据的多人交互群体发现进行研究,提出了一种基于骨骼轨迹聚合模型的交互群体发现算法(Interactive Group Discovery Algorithm Based on Skeleton Trajectory Aggregation,IGSTA)。首先,将骨骼数据标准化到以人为中心的坐标系,减小尺寸变化和初始位置不同对识别精度的影响;其次,提出了一种多核表示的骨骼轨迹聚合模型,准确描述了学生交互行为群体的变化;最后,对聚合后的骨骼轨迹进行聚类,实现交互群体发现。采用Kinect获取模拟的课堂学生交互行为视频,通过实验验证了该方法的有效性,即在骨骼节点缺失的情况下,仍可准确发现课堂环境下的学生交互群体。
中图分类号:
[1]KIM D,KIM D H,KWAK K C.Classification of K-Pop dance movements based on skeleton information obtained by a kinect sensor[J].Sensors,2017,17(6):1261. [2]MILLE J,LEBORGNE A,TOUGNE L.Euclidean Distance-Based Skeletons:A Few Notes on Average Outward Flux and Ridgeness[J].Journal of Mathematical Imaging and Vision,2019,61(3):310-330. [3]GHORBEL E,BOUTTEAU R,BOONAERT J,et al.Kinematic Spline Curves:A temporal invariant descriptor for fast action recognition[J].Image and Vision Computing,2018,77:60-71. [4]BISWAS J,VELOSO M.Depth camera based indoor mobile robot localization and navigation[C]//Proceedings-IEEE International Conference on Robotics and Automation.2011:1697-1702. [5]WU Q,CHEN Z,ZHOU Y X,et al.Human-computer interaction based on Kinect skeleton tracking technology[J].Journal of Changzhou University (Natural Science Edition),2014,26(3):6-12. [6]LI J,TONG L J,YING X,et al.Simulation of 3D Human Wal-king Posture Based on Skeleton Data [J].Digital Technology and Application,2017(10):68-71. [7]GHAZAL S,KHAN U S.Human posture classification using skeleton information[C]//2018 International Conference on Computing,Mathematics and Engineering Technologies (iCoMET).IEEE,2018:1-4. [8]WEI Y T,QIN D Y,HU J M,et al.The Recognition ofStudents' Classroom Behaviors based on Deep Learning[J].Modern Educational Technology,2019,29(7):88-92. [9]CAI H Z.Research and Application of Classroom Behavior Reco-gnition Based on Space-Time Interest Points[D].Nanjing:Nanjing Normal University,2014. [10]CHEN J,XIE R M.Research on the Detection of Students'Classroom States Based on HOG Features[J].Journal of Chongqing University of Science and Technology (Natural Scien-ces Edition),2019,21(4):89-92. [11]PAN M,WANG J,LUO Z.Modelling Study on Learning Affects for Classroom Teaching/Learning Auto-Evaluation[J].Science,2018,6(3):81-86. [12]ZALETELJ J,KOIR A.Predicting students' attention in the classroom from Kinect facial and body features[J/OL].EURASIP Journal on Image and Video Processing,2017(1):80.https://doi.org/10.1186/s13640-017-0228-8. [13]HUYNH-THE T,BANOS O,LE B V,et al.PAM-based flexible generative topic model for 3D interactive activity recognition[C]//2015 International Conference on Advanced Technologies for Communications (ATC).IEEE,2015. [14]JI Y,YE G,CHENG H.Interactive body part contrast miningfor human interaction recognition[C]//IEEE International Conference on Multimedia and Expo Workshops (ICMEW).IEEE,2014. [15]JI Y,CHENG H,ZHENG Y,et al.Learning contrastive feature distribution model for interaction recognition[J].Journal of Vi-sual Communication and Image Representation,2015,33:340-349. [16]WU H,SHAO J,XU X,et al.Recognition and Detection ofTwo-Person Interactive Actions Using Automatically Selected Skeleton Features[J].IEEE Transactions on Human-Machine Systems,2017(99):1-7. [17]BLOOM V,ARGYRIOU V,MAKRIS D.Hierarchical transfer learning for online recognition of compound actions[J].Compu-ter Vision and Image Understanding,2016,144(3):62-72. [18]COPPOLA C,FARIA D R,NUNES U,et al.Social activity recognition based on probabilistic merging of skeleton features with proximity priors from RGB-D data[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).IEEE,2016. [19]XU H,ZHOU Y,LIN W,et al.Unsupervised Trajectory Clustering via Adaptive Multi-kernel Based Shrinkage [C]//IEEE International Conference on Computer Vision.IEEE,2015. [20]CAO Z,SIMON T,WEI S,et al.Realtime Multi-person 2DPose Estimation Using Part Affinity Fields[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,HI,USA,2017:1302-1310. [21]WU D,SHAO L.Leveraging Hierarchical Parametric Networks for Skeletal Joints Based Action Segmentation and Recognition[C]//IEEE Conference on Computer Vision & Pattern Recognition.IEEE,2014. [22]DAI S W,WU X J,GAO C F,et al.Fuzzy Clustering Based On Multiple Kernel[J].Computer Engineering and Applications,2016,52(2):65-66. |
[1] | 郁舒昊, 周辉, 叶春杨, 王太正. SDFA:基于多特征融合的船舶轨迹聚类方法研究 SDFA:Study on Ship Trajectory Clustering Method Based on Multi-feature Fusion 计算机科学, 2022, 49(6A): 256-260. https://doi.org/10.11896/jsjkx.211100253 |
[2] | 许华杰, 吴青华, 胡小明. 基于轨迹多特性的隐私保护算法 Privacy Protection Algorithm Based on Multi-characteristics of Trajectory 计算机科学, 2019, 46(1): 190-195. https://doi.org/10.11896/j.issn.1002-137X.2019.01.029 |
[3] | 范菁,阮体洪,吴佳敏,董天阳. 基于二次谱聚类和HMM-RF混合模型的车辆行为识别方法研究 Vehicle Behavior Recognition Method Based on Quadratic Spectral Clustering and HMM-RF Hybrid Model 计算机科学, 2016, 43(5): 288-293. https://doi.org/10.11896/j.issn.1002-137X.2016.05.055 |
|