计算机科学 ›› 2021, Vol. 48 ›› Issue (2): 207-211.doi: 10.11896/jsjkx.201000042

• 人工智能 • 上一篇    下一篇

基于表示学习的在线学习交互质量评价方法

王雪岑, 张昱, 刘迎婕, 于戈   

  1. 东北大学计算机科学与工程学院 沈阳110169
  • 收稿日期:2020-10-09 修回日期:2020-11-04 出版日期:2021-02-15 发布日期:2021-02-04
  • 通讯作者: 张昱(zhangyu@mail.neu.edu.cn)
  • 作者简介:1871579@stu.neu.edu.cn
  • 基金资助:
    国家自然科学基金(U1811261);中央高校基本科研业务费专项资金资助(N180716010)

Evaluation of Quality of Interaction in Online Learning Based on Representation Learning

WANG Xue-cen, ZHANG Yu, LIU Ying-jie, YU Ge   

  1. School of Computer Science and Engineering,Northeastern University,Shenyang 110169,China
  • Received:2020-10-09 Revised:2020-11-04 Online:2021-02-15 Published:2021-02-04
  • About author:WANG Xue-cen,born in 1996,postgra-duate.Her main research interests include smart education and recommendation system.
    ZHANG Yu,born in 1980,Ph.D,lectu-rer,is a member of China Computer Fe-deration.His main research interests include big data in education,social networks,etc.
  • Supported by:
    The National Natural Science Foundation of China(U1811261) and Fundamental Research Funds for the Central Universities(N180716010).

摘要: 当今的教育模式发生着非常重大的变革,教育正在向泛在化、智能化、个性化的方向发展。以Massive Open Online Courses(MOOCs)为代表的在线教育逐渐进入大众视野,在线教育中的交互性成为了决定在线学习质量的关键。研究表明,学习过程中的交互为学习者提供了有效且高效的帮助和支持,对学习过程的评价反馈可以有效地提高学习效果。在教育领域,对学习者和学习资源之间的交互进行建模至关重要,表示学习技术为学习者和学习资源之间的顺序交互建模提供了具体方案。文中首先建立在线学习的交互网络模型,然后使用两个循环神经网络将网络中的学习者和学习资源节点嵌入到一个欧氏空间中,并提出交互质量评价指标,以判断学习者的学习效果是否达到预期。在实际数据集上的实验证明了所提方法的有效性。

关键词: 表示学习, MOOCs, 交互评价, 教育大数据

Abstract: The model of education today has undergone a very significant change,and education is developing in the direction of ubiquity,intelligence and individuation.Online education,represented by MOOCs,is gradually coming into the public field of vision,and the interactivity in online education has become the key to determine the quality of online learning.Some researches show that the interaction in the learning process provides efficient help and effective support for learners,and the feedback of learning process evaluation can effectively improve the interaction effect of learning.Modeling interactions between learners and learning resources is crucial in domains such as e-commerce.Representation learning presents a method to model the sequential interactions between learners and learning resources.Firstly,an interactive network of online learning is established.And then,the learners and learning resources can be embedded into a Euclidean space by using two recurrent neural networks.The evaluation index of the quality of interaction is proposed,which can judge whether the learner's learning effect is up to the expectation.The experiments on real datasets reveal the effectiveness of the proposed method.

Key words: Representation learning, MOOCs, Interactive evaluation, Big data in education

中图分类号: 

  • TP311.13
[1] KEEGAN D.Reintegration of the teaching acts[J].Theoretical principles of distance education,1993:113-134.
[2] DOWMES S.Connectivism and connective knowledge:essays on meaning and learning networks[DB/OL].National Research Council Canada.http://www.downes.ca/files/books/Connective_Knowledge-19May2012.pdf.
[3] PARKER A,PARKER S.Interaction:The vital conversation in online instruction[OL].https://eric.ed.gov/?id=ED541876.
[4] ROSSI D,RENSBURG H,HARREVELD R,et al.Exploring a Cross-Institution research collaboration and innovation:deploying social software and web 2.0 technologies to investigate online learning designs and interactions in two Australian Universities[J].Dental & Medical Problems,2012,5(2):1-11.
[5] BIGGS J.Testing:to educate or to select?[M].Hongkong:Hong Kong Educational Publishing Company,1996.
[6] ALDERSON J C,WALL D.Does washback exist?[J].Applied Linguistics,1993,14(2):115-129.
[7] SIEMENS G.Orientation:sensemaking and wayfinding in complex distributed online information environments[D].Aberdeen:University of Aberdeen Doctoral Dissertation,2011.
[8] PRASHA S,SURAJ M,DUSTIN A,et al.Learning from dynamic user interaction graphs to forecast diverse social behavior[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM '19).2019:2033-2042.
[9] CAI R,BAI X,WANG Z,et al.Modeling sequential online interactive behaviors with temporal point process[C]//the 27th ACM International Conference.ACM,2018:873-882.
[10] FENG W,TANG J,LIU T X.Understanding Dropouts inMOOCs[J].Proceedings of the AAAI Conference on Artificial Intelligence,2019,33:517-524.
[11] MOORE M G.Three types of interaction[J].distance education new perspectives,1993,3(2):1-7.
[12] LAURILLARD D.Rethinking university teaching:a conversa-tional framework for the effective use of learning technologies[M].London:Routledge,2002.
[13] ROBLYER M D,WIENCKW W R.Design and use of a rubic to access and encourage interactive qualities in distance courses[J].The American Journal of Distance Education,2003,17(2):77-98.
[14] WEI Z,CHEN L,XI J H.Research on the evaluation index system of interactive quality of web-based course teaching[J].Open Education Research,2004(6):34-39.
[15] PEROZZI B,ALRFOU R,SKIENA S.DeepWalk:online learning of social representations[C]//ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2014:701-710.
[16] GROVER A,LESKOVEC J.Node2vec:scalable feature learning for networks[C]//The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:855-864.
[17] RIBEIRO L F R,SAVARESE P H P,FIGUEIREDO D R.Struc2vec:learning node representations from structural identity[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2017.
[18] FU T Y,LEE W C,LEI Z.Hin2vec:explore meta-paths in heterogeneous information networks for representation learning[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge.ACM,2017.
[19] DAI H,WANG Y,TRIVEDI R,et al.Deep coevolutionary network:embedding user and item features for recommendation[J].arXiv:learning.arXiv preprint arXiv:1609.03675.2016.
[20] KUMAR S,ZHANG X,LESKOVEC J.Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks[C]//the 25th ACM SIGKDD International Conference.ACM,2019:1269-1278.
[1] 李鑫超, 李培峰, 朱巧明. 一种基于层级信息优化的有向网络表示学习方法[J]. 计算机科学, 2021, 48(2): 100-104.
[2] 丁钰, 魏浩, 潘志松, 刘鑫. 网络表示学习算法综述[J]. 计算机科学, 2020, 47(9): 52-59.
[3] 蒋宗礼, 李苗苗, 张津丽. 基于融合元路径图卷积的异质网络表示学习[J]. 计算机科学, 2020, 47(7): 231-235.
[4] 黄易, 申国伟, 赵文波, 郭春. 一种基于漏洞威胁模式的网络表示学习算法[J]. 计算机科学, 2020, 47(7): 292-298.
[5] 张志扬, 张凤荔, 陈学勤, 王瑞锦. 基于分层注意力的信息级联预测模型[J]. 计算机科学, 2020, 47(6): 201-209.
[6] 李鑫超, 李培峰, 朱巧明. 一种基于改进向量投影距离的知识图谱表示方法[J]. 计算机科学, 2020, 47(4): 189-193.
[7] 张虎, 周晶晶, 高海慧, 王鑫. 融合节点结构和内容的网络表示学习方法[J]. 计算机科学, 2020, 47(12): 119-124.
[8] 顾秋阳, 琚春华, 吴功兴. 融入深度自编码器与网络表示学习的社交网络信息推荐模型[J]. 计算机科学, 2020, 47(11): 101-112.
[9] 陈晓军, 向阳. STransH:一种改进的基于翻译模型的知识表示模型[J]. 计算机科学, 2019, 46(9): 184-189.
[10] 韩忠明, 郑晨烨, 段大高, 董健. 基于多信息融合表示学习的关联用户挖掘算法[J]. 计算机科学, 2019, 46(4): 77-82.
[11] 冶忠林, 赵海兴, 张科, 朱宇. 基于多视图集成的网络表示学习算法[J]. 计算机科学, 2019, 46(1): 117-125.
[12] 朱陶,任海军,洪卫军. 一种基于前向无监督卷积神经网络的人脸表示学习方法[J]. 计算机科学, 2016, 43(6): 303-307.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王海涛, 宋丽华, 向婷婷, 刘力军. 人工智能发展的新方向——人机物三元融合智能[J]. 计算机科学, 2020, 47(11A): 1 -5 .
[2] 陈训敏, 叶书函, 詹瑞. 基于多任务学习及由粗到精的卷积神经网络人群计数模型[J]. 计算机科学, 2020, 47(11A): 183 -187 .
[3] . 目录[J]. 计算机科学, 2020, 47(12): 0 .
[4] . 复杂系统的软件工程和需求工程专题前言[J]. 计算机科学, 2020, 47(12): 2 .
[5] 孟繁祎, 王莹, 于海, 朱志良. 复杂软件系统的重构技术:现状、问题与展望[J]. 计算机科学, 2020, 47(12): 1 -10 .
[6] 吴文峻, 于鑫, 蒲彦均, 汪群博, 于笑明. 微服务时代的复杂服务软件开发[J]. 计算机科学, 2020, 47(12): 11 -17 .
[7] 杨经纬, 魏子麒, 刘璘. 用户如何看待产品中的预测分析功能?——面向非功能性需求的调研报告[J]. 计算机科学, 2020, 47(12): 18 -24 .
[8] 贾经冬, 张筱曼, 郝璐, 谭火彬. 工业界需求工程关注点分析[J]. 计算机科学, 2020, 47(12): 25 -34 .
[9] 周凯, 任怡, 汪哲, 管剑波, 张芳, 赵言亢. 基于主题模型的Ubuntu操作系统缺陷报告的分类及分析[J]. 计算机科学, 2020, 47(12): 35 -41 .
[10] 杨立, 马佳佳, 江华禧, 马肖肖, 梁赓, 左春. 面向机器学习系统的需求建模与决策选择[J]. 计算机科学, 2020, 47(12): 42 -49 .