计算机科学 ›› 2022, Vol. 49 ›› Issue (1): 133-139.doi: 10.11896/jsjkx.201000179

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于生成对抗网络和元路径的异质网络表示学习

蒋宗礼, 樊珂, 张津丽   

  1. 北京工业大学信息学部 北京100124
  • 收稿日期:2020-10-29 修回日期:2021-03-17 出版日期:2022-01-15 发布日期:2022-01-18
  • 通讯作者: 樊珂(514068102@qq.com)
  • 作者简介:jiangzl@bjut.edu.cn

Generative Adversarial Network and Meta-path Based Heterogeneous Network Representation Learning

JIANG Zong-li, FAN Ke, ZHANG Jin-li   

  1. Department of Information Technology,Beijing University of Technology,Beijing 100124,China
  • Received:2020-10-29 Revised:2021-03-17 Online:2022-01-15 Published:2022-01-18
  • About author:JIANG Zong-li,born in 1956,Ph.D,professor,Ph.D supervisor,is a member of China Computer Federation.His main research interests include network information search and processing.
    FAN Ke,born in 1996,postgraduate.His main research interests include he-terogeneous information network representation learning and so on.

摘要: 现实世界中的信息网络大多为异质信息网络,旨在表示低维空间中节点数据的网络表示方法已普遍用于分析异质信息网络,从而有效融合异质网络中丰富的语义信息和结构信息。但是现有的异质网络表示方法通常采用负采样从网络中随机选择节点,并且对节点和边的异质性学习能力不足。受生成式对抗网络和元路径的启发,文中提出了一种新型的异质网络表示方法。首先对采样方法使用元路径的策略进行改进,根据元路径不同的权重取样,使样本更好地体现节点之间存在的直接和间接关系,增强样本的语义关联。然后在生成对抗的博弈过程中使模型充分考虑节点和边的异质性并具备关系感知能力,实现对异质信息网络的表示学习。实验结果表明,与目前的表示算法相比,该模型学习到的表示向量在分类和链路预测实验中具有更好的性能表现。

关键词: 深度学习, 生成对抗网络, 网络表示学习, 异质信息网络, 元路径

Abstract: Most of the information works in real world are heterogeneous information networks (HIN).Network representation methods aiming to represent node data in low dimensional space have been widely used to analyze heterogeneous information networks,so as to effectively integrate rich semantic information and structural information in heterogeneous networks.However,the existing heterogeneous networks representation methods usually use negative sampling to select nodes randomly from the network,and the heterogeneity learning ability of nodes and edges is insufficient.Inspired by the generative adversarial networks (GAN) and meta-path,we propose a new framework,which is improved by weighted meta-path based sampling strategy.The samples can better reflect the direct and indirect relationship between nodes and enhance the semantic association of samples.In the process of generation and confrontation,the model fully considers the heterogeneity of nodes and edges,and has the ability of relationship perception,so as to realize the representation learning of heterogeneous information networks.The experimental results show that,compared with the current representation algorithms,the representation vectors learned by the model have better performance in classification and link prediction experiments.

Key words: Deep lear-ning, Generative adversarial network, Heterogeneous information networks, Meta-path, Network representation learning

中图分类号: 

  • TP183
[1]TU C C,YANG C,LIU Z Y,et al.Network representationlearning:an overview[J].Sci. Sin. Inform.,2017,47(8):980-996.
[2]QI J S,LIANG X,LI Z Y,et al.Representation Learning of Large-Scale Complex Information Network:Concepts,Methods and Challenges[J].Chinese Journal of Computers,2018,41(10):2394-2420.
[3]ARSOV N,MIRCEVA G.Network Embedding:An Overview[J].arXiv:1911.11726,2019.
[4]PEROZZI B,AL-RFOU R,SKIENA S.Deepwalk:Online lear-ning of social representations [C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.2014:701-710.
[5]GROVER A,LESKOVEC J.node2vec:Scalable feature learning for networks [C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mi-ning.2016:855-864.
[6]TANG J,QU M,WANG M,et al.Line:Large-scale information network embedding [C]//Proceedings of the 24th International Conference on World Wide Web.2015:1067-1077.
[7]ZHOU H,ZHAO Z Y,LI C.Survey on representation learning methods oriented to heterogeneous information network[J].Journal of Frontiers of Computer Science and Technology,2019,13(7):1081-1093.
[8]DONG Y,CHAWLA N V,SWQMI A.metapath2vec:Scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:135-144.
[9]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial nets[C]//Advances in Neural Information Processing Systems.2014:2672-2680.
[10]WANG H,WANG J,WANG J,et al.Graphgan:Graph representation learning with generative adversarial nets[C]//Thirty-second AAAI Conference on Artificial Intelligence.2018.
[11]MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representation of words and phrases and their composition[C]//Advances in Neural Information Processing Systems.2013:3111-3119.
[12]MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[J].arXiv:1301.3781,2013.
[13]SHI C,LI Y,ZHANG J,et al.A survey of heterogeneous information network analysis[J].IEEE Transactions on Knowledge and Data Engineering,2016,29(1):17-37.
[14]ZHANG J L,JIANG Z L,LI T.CHIN:Classification withMETA-PATH in heterogeneous information networks[C]//Proceedings of the 1st International Conference on Applied Informatics.2018:63-74.
[15]GUPTA M,KUMAR P,BHASKER B.HeteClass:A meta-path based framework for transductive classification of objects in he-terogeneous information networks[J].Expert Systems with Applications,2017,68:106-122.
[16]SCOTT R,ZEYNEP A,YAN X C,et al.Generative adversarial text to image synthesis[C]//ICML.2016:1060-1069.
[17]BIAN R,YUN S,DOBBIE G,et al.Network Embedding and Change Modeling in Dynamic Heterogeneous Networks[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:861-864.
[18]WANG X,LU Y F,SHI C,et al.Dynamic Heterogeneous Information Network Embedding with Meta-path based Proximity[J/OL].IEEE Transactions on Knowledge and Data Engineering.http://yuanfulu.github.io/publication/TKDE-DyHNE.pdf.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[3] 张佳, 董守斌.
基于评论方面级用户偏好迁移的跨领域推荐算法
Cross-domain Recommendation Based on Review Aspect-level User Preference Transfer
计算机科学, 2022, 49(9): 41-47. https://doi.org/10.11896/jsjkx.220200131
[4] 黄丽, 朱焱, 李春平.
基于异构网络表征学习的作者学术行为预测
Author’s Academic Behavior Prediction Based on Heterogeneous Network Representation Learning
计算机科学, 2022, 49(9): 76-82. https://doi.org/10.11896/jsjkx.210900078
[5] 吕晓锋, 赵书良, 高恒达, 武永亮, 张宝奇.
基于异质信息网的短文本特征扩充方法
Short Texts Feautre Enrichment Method Based on Heterogeneous Information Network
计算机科学, 2022, 49(9): 92-100. https://doi.org/10.11896/jsjkx.210700241
[6] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[7] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[8] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[9] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[10] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[11] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[12] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
[13] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[14] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[15] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!