计算机科学 ›› 2021, Vol. 48 ›› Issue (6A): 410-413.doi: 10.11896/jsjkx.201100048

• 网络&通信 • 上一篇    下一篇

一种可靠的水下传感器网络传输策略

洪昌建, 高阳, 张凡, 张磊   

  1. 武汉第二船舶设计研究所 武汉430205
  • 出版日期:2021-06-10 发布日期:2021-06-17
  • 通讯作者: 洪昌建(hongcj@yeah.net)

Reliable Transmission Strategy for Underwater Wireless Sensor Networks

HONG Chang-jian, GAO Yang, ZHANG Fan, ZHANG Lei   

  1. Wuhan Second Ship Design and Research Institute,Wuhan 430205,China
  • Online:2021-06-10 Published:2021-06-17
  • About author:HONG Chang-jian,born in 1988,postgraduate.His main research interest include UWSN and so on.

摘要: 针对Layered-DBR算法中网络节点需感知全网节点的剩余能量和邻居节点距离的局限性,提出一种可靠的水下传感器网络数据传输策略RTS(Reliable Transmission Strategy),节点仅通过感知自身节点深度信息、剩余能量及网络分层间距来计算当前节点的能量因子和距离因子。制定了一种网络性能评估方法来平衡网络生命周期与数据丢包,并通过仿真实验确定能量因子和距离因子的占比,最终给出消息转发概率的计算公式。仿真对比实验表明,与DBR,DMBR,Layered-DBR等算法相比,RTS算法能够有效控制网络冗余、减少数据丢包,同时网络具有较长的生命周期。

关键词: 水下传感器网络, 能量因子, 距离因子, 转发概率, 网络冗余, 数据丢包

Abstract: Aiming at the limitation of network nodes needing to perceive the residual energy of the whole network nodes and neighbor node distance in the Layered-DBR algorithm,a reliable under water sensor network data transmission strategy RTS(Reliable Transmission Strategy) is proposed which calculates the energy and distance factors by current node depth information,residual energy and network layered spacing.This paper develops a network performance evaluation method to balance the network life cycle and data packet loss rate,to determine the proportion of energy factor and distance factor through simulation experiment,and finally gives the calculation method of the probability of message forwarding.The simulation comparison experiment shows that compared with DBR、DMBR、Layered-DBR,the RTS algorithm can effectively control network redundancy,reduce data packet loss,and has a long life cycle of the network.

Key words: Underwater sensor networks, Energy factor, Distance factors, Forwarding probability, Network redundancy, Data packet loss

中图分类号: 

  • TP393
[1] LI W T,WANG D,WANG P.Insider attacks against multi-factor authentication protocols for wireless sensor networks[J].Ruan Jian Xue Bao/Journal of Software,2019,30(8):2375-2391.
[2] HUANG M G,HUANG Y C,YU B,et al.Software-Definedwireless sensor networks:A research survey[J].Ruan Jian Xue Bao,2018,29(9):2733-2752.
[3] ALI M F,JAYAKODY D N K,CHURSINY et al.Recent Advances and Future Directions on Underwater Wireless Communications[J].Archives of Computational Methods in Engineering,2020,27(5):1379-1412.
[4] BEENISH A,ALASTAIR A,MARIAN W.Dynamically Reconfigurable Routing Protocol Design for Underwater Wireless Sensor Network[J].International Journal on Smart Sensing and Intelligent Systems,2020,7(5):1-5.
[5] YAN H,CUI J H.DBR:depth-based routing for underwatersensor networks[C]//The 7th International IFIP-TC6 Networking Conference.Singapore,2008:72-86.
[6] LIU G Z,LI Z B.Depth-based multi-hop routing protocol for underwater Sensor Network[C]//2010 2nd International Conference on Industrial Mechatronics and Automation.2010:268-270.
[7] PENG J,HONG C J,LIU T,et al.Strategy of routing based on layered for underwater wireless sensor networks[J].Journal on Communications,2014(6):25-31.
[8] HONG C J,WU W J,TANG P P.A Dynamic Layered Clustering Routing Algorithm in Underwater Sensor Networks[J].Journal of Electronics & Information Technology,2015(6):1291-1297.
[9] LIU T,PENG J,CHEN G,et al.Avoidance of Energy HoleProblem Based on Density Control Mechanism for Wireless Sensor Networks[J].Chinese Journal of Computers.2016,39(5):993-1006.
[10] SOZER E M,STOJANOVIC M,PROAKIS J G.Underwateracoustic networks[J].IEEE Journal of Oceanic Engineering,2000,25(1):72-83.
[1] 郑君杰,李延斌,尹路,马金钢,王洪涛. 水下传感器网络系统架构与体系结构研究[J]. 计算机科学, 2013, 40(Z6): 251-254.
[2] 魏先民. 基于多面体质心算法的水下传感器网络定位[J]. 计算机科学, 2012, 39(5): 102-105.
[3] . 一种适合水下无线传感器网络的能量有效路由协议[J]. 计算机科学, 2008, 35(1): 38-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 方磊, 武泽慧, 魏强. 二进制代码相似性检测技术综述[J]. 计算机科学, 2021, 48(5): 1 -8 .
[2] 朱雨, 庞建民, 徐金龙, 陶小涵, 王军. 面向SW26010处理器的三维Stencil自适应分块参数算法[J]. 计算机科学, 2021, 48(6): 10 -18 .
[3] 冯芙蓉, 张兆功. 目标轮廓检测技术新进展[J]. 计算机科学, 2021, 48(6A): 1 -9 .
[4] 孙正, 张小雪. 生物光声成像中声反射伪影抑制方法的研究进展[J]. 计算机科学, 2021, 48(6A): 10 -14 .
[5] 周欣, 刘硕迪, 潘薇, 陈媛媛. 自然交通场景中的车辆颜色识别[J]. 计算机科学, 2021, 48(6A): 15 -20 .
[6] 黄雪冰, 魏佳艺, 沈文宇, 凌力. 基于自适应加权重复值滤波和同态滤波的MR图像增强[J]. 计算机科学, 2021, 48(6A): 21 -27 .
[7] 江妍, 马瑜, 梁远哲, 王原, 李光昊, 马鼎. 基于分数阶麻雀搜索优化OTSU肺组织分割算法[J]. 计算机科学, 2021, 48(6A): 28 -32 .
[8] 张子丞, 谭志苇, 张晨瑞, 王旋, 刘晓璇, 俞一彪. 基于高低频带对数能量谱比贝叶斯决策的语音端点检测[J]. 计算机科学, 2021, 48(6A): 33 -37 .
[9] 崔雯昊, 蒋慕蓉, 杨磊, 傅鹏铭, 朱凌霄. 结合MCycleGAN与RFCNN实现太阳斑点图高分辨重建[J]. 计算机科学, 2021, 48(6A): 38 -42 .
[10] 田洋, 毕秀丽, 肖斌, 李伟生, 马建峰. 基于离散切比雪夫变换的图像接缝裁剪篡改检测[J]. 计算机科学, 2021, 48(6A): 43 -50 .