计算机科学 ›› 2021, Vol. 48 ›› Issue (6A): 369-373.doi: 10.11896/jsjkx.201100099

• 网络&通信 • 上一篇    下一篇

面向无线网络相机的低功耗架构研究综述

何权奇, 余飞鸿   

  1. 浙江大学光电科学与工程学院 杭州310027
  • 出版日期:2021-06-10 发布日期:2021-06-17
  • 通讯作者: 余飞鸿(feihong@zju.edu.cn)
  • 作者简介:rivers.sparksfly@gmail.com

Review of Low Power Architecture for Wireless Network Cameras

HE Quan-qi, YU Fei-hong   

  1. College of Optical Science and Engineering,Zhejiang University,Hangzhou 310027,China
  • Online:2021-06-10 Published:2021-06-17
  • About author:HE Quan-qi,born in 1998,postgra-duate,is a member of China Computer Federation.His main research interests include embedded software of camera and the image processing.
    YU Fei-hong,born in 1964,Ph.D,professor,Ph.D supervisor.His main research interests include optical design and image processing.

摘要: 目前,无线网络相机在环境监控领域、军事监控领域、城市监控领域正发挥越来越重要的作用。在远程或者密闭环境中使用时,无线网络相机由电池供电且不方便更换电池,相机必须满足长时间续航的要求。相机续航时间由相机功耗以及电池容量共同决定,由于电池技术无突破性进展,无线网络相机的低功耗架构设计成为了一个重要的研究方向。首先,罗列和分析了无线网络相机上各种硬件方案以及实际功耗表现。接着,对比了不同编码算法的功耗表现。在相机动态功耗管理方面,提出和分析了无线网络相机的动态功耗模型,为动态功耗管理提供理论基础,还分析了相机状态切换时的功耗模型,确定了超时模式下相机切换状态的阈值时间。最后,提出了无线网络相机的低功耗架构的总体设计流程。

关键词: 无线网络相机, 低功耗框架设计, 电池, 动态功耗管理, 嵌入式应用系统

Abstract: At present,wireless network camera is playing an increasingly important role in the field of environmental monitoring,military monitoring and urban monitoring.When used in remote or closed environments,the wireless network camera is powered by batteries and it is not convenient to replace the battery.The camera must meet the requirements of long battery life.The battery life of the camera is determined by the power consumption of the camera and the battery capacity.Since there is no breakthrough in battery technology,the low-power architecture design of wireless network cameras has become an important research direction.Firstly,the hardware solutions and power consumption performance of wireless network cameras are listed and analyzed.Then,the power performance of different coding algorithms is compared.In the aspect of camera dynamic power management,the dynamic power model of wireless network camera is proposed and analyzed,which provides the theoretical basis for dynamic power management.The power model of camera state switching is also analyzed,and the threshold time of camera state switching in time-out mode is determined.Finally,the overall design process of low power architecture of wireless network camerais presented.

Key words: Wireless network camera, Low energy consumption architecture, Battery, Dynamic power management, Embedded application system

中图分类号: 

  • TN919.82
[1] COSTA D G.Visual Sensors Hardware Platforms:A Review[J].IEEE Sensors Journal,2019,20(8):4025-4033.
[2] CHEN Y B,LI Q,WANG Y J.Design of hospital Environmental Monitoring System based on WSNs [J].Sensors and Microsystems,2016,2016(2):120-122,129.
[3] IDOUDI M,BOURENNANE E B,GRAYAA K.Wireless visual sensor network platform for indoor localization and tracking of a patient for rehabilitation task [J].IEEE Sensors Journal,2018,18(14):5915-28.
[4] CAO T,LAI Z Y,HUANG A W.Design and Implementation of crop growth image remote Acquisition System [J].Agricultural Mechanization Research,2020(1):16.
[5] WANG Z,ZHANG B K,WANG J,et al.Cuda-based real-time HD Video Mosaic Method for Multiple Cameras [J].Computer Applications and Software,2016,33(2):123-128.
[6] WANG X.Design and Implementation of Android Network Panorama Camera based on Multi-sensor [D].Harbin:Harbin Engineering University,2016.
[7] YUAN S D,DENG Y,LUO A,et al.Attempt to use wireless infrared camera technology to alleviate human-image conflict [J].Forestry Construction,2019(6):12.
[8] WANG Y D.Research on multi-robot Positioning System based on binocular camera and K-means Algorithm [D].Anhui:Anhui University of Technology,2018.
[9] WANG L,LEI C H,YANG Y J.Design of a microscope Video Wireless Teaching Device [J].China Medical Devices,2018,33(12):91-93.
[10] KUMAR A,ZHAO M,WONG K J,et al.A comprehensivestudy of iot and wsn mac protocols:Research issues,challenges and opportunities [J].IEEE Access,2018,6:76228-76262.
[11] WEBB M.SMART 2020:enabling the low carbon economy in the information age[R].The Climate Group on behalf of the Global eSustainability Initiative (GeSI),2008.
[12] LI YANRONG.Camera motion control based on 485 interface of 4G Wireless Network Camera [D].Northwest A&F University,2018.
[13] QIAN Z H,WANG Y J.Overview of Wireless Sensor Networks facing the Internet of Things[J].Journal of Electronics and Information Technology,2013,35(1):215-227.
[14] HENGSTLER S,PRASHANTH D,FONG S,et al.MeshEye:a hybrid-resolution smart camera mote for applications in distributed intelligent surveillance[C]//International Conference on Information Processing in Sensor Networks.2007.
[15] CHEN P,AHAMMAD P,BOYER C,et al.CITRIC:A low-bandwidth wireless camera network platform[C] //ACM/IEEE International Conference on Distributed Smart Cameras.2008.
[16] LUO A,YIN S,LIU L,et al.Low-Power Low-Cost Implementation of IEEE 802.15.4 in WiSNSoC Design[C] //International Conference on Wireless Communications Networking and Mobile Computing (WiCOM).2010.
[17] LI YUCHENG,HUANG TANGMENG.Design of 1080P Webcam based on S5PV210 [J].Computer Engineering and Design,2014,35(11):3813-3819.
[18] SAEED A,ABDELKADER A,KHAN M,et al.Argus:realistic target coverage by drones[C] //ACM/IEEE International Conference on Information Processing in Sensor Networks.2017.
[19] SLEPIAN D,WOLF J.Noiseless coding of correlated informa-tion sources [J].IEEE Transactions on information Theory,1973,19(4):471-80.
[20] WYNER A,ZIV J.The rate-distortion function for source co-ding with side information at the decoder [J].IEEE Transactions on information Theory,1976,22(1):1-10.
[21] CHIEN S Y,CHENG T Y,OU S H,et al.Power consumption analysis for distributed video sensors in machine-to-machine networks [J].IEEE Journal on Emerging and Selected Topics in Circuits and Systems,2013,3(1):55-64.
[22] BENINI L,BOGLIOLO A,DE MICHELI G.System-level dynamic power management[C]//IEEE Alessandro Volta Memorial Workshop on Low-Power Design.1999.
[23] WU Q,XIONG G M.Research on Dynamic Power Consumption Management Strategy Based on Stochastic Decision Model [J].Acta Computerica Sinica,2007,30(4):622-628.
[24] SANMIGUEL J C,CAVALLARO A.Energy consumptionmodels for smart camera networks [J].IEEE Transactions on Circuits and Systems for Video Technology,2016,27(12):2661-2674.
[25] MARGI C B,PETKOV V,OBRACZKA K,et al.Characterizing energy consumption in a visual sensor network testbed[C] //International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities.2006.
[26] REDONDI A,BURANAPANICHKIT D,CESANA M,et al.Energy consumption of visual sensor networks:Impact of spatio-temporal coverage [J].IEEE Transactions on Circuits and Systems for Video Technology,2014,24(12):2117-2131.
[27] YIN G H,GUO M,TIAN X,et al.Research on dynamic Power Management of Wireless Sensor Nodes based on MSP430[J].Modern Electronic Technique,2010,33(8):163-166.
[28] SOUSA F,CAMPOS R,RICARDO M.Energy-efficient wireless multimedia sensor networks using FM as a control channel[C] //IEEE Symposium on Computers and Communications (ISCC).2014.
[29] DIAS J,SOUSA F,RIBEIRO F,et al.Green wireless video sensor networks using FM radio system as control channel[C]//Annual Conference on Wireless On-demand Network Systems and Services (WONS).2016.
[30] ABAS K,PORTO C,OBRACZKA K.Wireless smart cameranetworks for the surveillance of public spaces [J].Computer,2014,47(5):37-44.
[31] PHAM C.Low-cost,low-power and long-range image sensor for visual surveillance[C] //Workshop on Experiences in the Design and Implementation of Smart Objects.2016.
[32] VÍTEK S,MELNICˇUK P.A distributed wireless camera system for the management of parking spaces [J].Sensors,2018,18(1):69.
[33] CHEN H.Research on the Architecture and Power Distribution of Multi-node Cooperative Visual Sensor Network [D].Qilu University of Technology,2019.
[34] BOAVENTURA A,COLLADO A,CARVALHO N B,et al.Optimum behavior:Wireless power transmission system design through behavioral models and efficient synthesis techniques [J].IEEE Microwave Magazine,2013,14(2):26-35.
[35] POPOVI Z,FALKENSTEIN E A,COSTINETT D,et al.Low-power far-field wireless powering for wireless sensors [J].Proceedings of the IEEE,2013,101(6):1397-1409.
[36] VYAS R,LAKAFOSIS V,RIDA A,et al.based RFID-enabled wireless platforms for sensing applications [J].IEEE Transactions on Microwave Theory and Techniques,2009,57(5):1370-1382.
[37] XIA Y Q,GAO R Z,LIN M,et al.Research on cloud Control System of Green Energy Complementary Smart Power Plant [J].Journal of Automation,2020,46(9):1844-1868.
[38] GILBERT J M,BALOUCHI F.Comparison of energy harvesting systems for wireless sensor networks [J].International Journal of automation and computing,2008,5(4):334-347.
[39] CAMMARANO A,PETRIOLI C,SPENZA D.Pro-Energy:Anovel energy prediction model for solar and wind energy-harvesting wireless sensor networks[C] //International Conference on Mobile Ad-Hoc and Sensor Systems.2012.
[40] ALIPPI C,GALPERTI C.An adaptive system for optimal solar energy harvesting in wireless sensor network nodes [J].IEEE Transactions on Circuits and Systems I:Regular Papers,2008,55(6):1742-1750.
[41] KIM S,VYAS R,BITO J,et al.Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms [J].Proceedings of the IEEE,2014,102(11):1649-1666.
[42] ZHOU S,GONG J,WANG X L,et al.Energy Management and Resource Optimization of Wireless Communication under dynamic Energy Acquisition [J].Science in China:Information Science,2012,42(10):1217-1230.
[1] 王青山 张信明 马涛 唐何. Ad Hoc无线网络功率控制综述[J]. 计算机科学, 2004, 31(7): 52-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 方磊, 武泽慧, 魏强. 二进制代码相似性检测技术综述[J]. 计算机科学, 2021, 48(5): 1 -8 .
[2] 朱雨, 庞建民, 徐金龙, 陶小涵, 王军. 面向SW26010处理器的三维Stencil自适应分块参数算法[J]. 计算机科学, 2021, 48(6): 10 -18 .
[3] 冯芙蓉, 张兆功. 目标轮廓检测技术新进展[J]. 计算机科学, 2021, 48(6A): 1 -9 .
[4] 孙正, 张小雪. 生物光声成像中声反射伪影抑制方法的研究进展[J]. 计算机科学, 2021, 48(6A): 10 -14 .
[5] 周欣, 刘硕迪, 潘薇, 陈媛媛. 自然交通场景中的车辆颜色识别[J]. 计算机科学, 2021, 48(6A): 15 -20 .
[6] 黄雪冰, 魏佳艺, 沈文宇, 凌力. 基于自适应加权重复值滤波和同态滤波的MR图像增强[J]. 计算机科学, 2021, 48(6A): 21 -27 .
[7] 江妍, 马瑜, 梁远哲, 王原, 李光昊, 马鼎. 基于分数阶麻雀搜索优化OTSU肺组织分割算法[J]. 计算机科学, 2021, 48(6A): 28 -32 .
[8] 张子丞, 谭志苇, 张晨瑞, 王旋, 刘晓璇, 俞一彪. 基于高低频带对数能量谱比贝叶斯决策的语音端点检测[J]. 计算机科学, 2021, 48(6A): 33 -37 .
[9] 崔雯昊, 蒋慕蓉, 杨磊, 傅鹏铭, 朱凌霄. 结合MCycleGAN与RFCNN实现太阳斑点图高分辨重建[J]. 计算机科学, 2021, 48(6A): 38 -42 .
[10] 田洋, 毕秀丽, 肖斌, 李伟生, 马建峰. 基于离散切比雪夫变换的图像接缝裁剪篡改检测[J]. 计算机科学, 2021, 48(6A): 43 -50 .