计算机科学 ›› 2021, Vol. 48 ›› Issue (6A): 137-142.doi: 10.11896/jsjkx.210100017

• 大数据&数据科学 • 上一篇    下一篇

图片分析在电子商务中的应用现状与未来趋势——基于图片视觉和内容特征的研究综述

刘荣, 张宁   

  1. 青岛大学商学院 山东 青岛266000
  • 出版日期:2021-06-10 发布日期:2021-06-17
  • 通讯作者: 张宁(Zhang_ning1980@126.com)
  • 作者简介:idonia17854278920@126.com
  • 基金资助:
    山东省社科规划项目(18CHLJ22);国家民委民族研究项目(2018-GMB-022)

Application Status and Future Trends of Photo Analysis in E-commerce:A Survey of Research Based on Photo Visual and Content Features

LIU Rong, ZHANG Ning   

  1. School of Business,Qingdao University,Qingdao,Shandong 266000,China
  • Online:2021-06-10 Published:2021-06-17
  • About author:LIU Rong,born in 1996,postgraduate.Her main research interests include the application research on text mining and so on.
    ZHANG Ning,born in 1980,professor.His main research interests include business data analysis and user ceneratedcontent(UGC).
  • Supported by:
    Social Science Planning Project of Shandong Province,China(18CHLJ22) and Ethnic Research Projects of State Ethnic Affairs Commission in China(2018-GMB-022).

摘要: 计算机深度学习和大数据挖掘技术的发展,使得有效提取海量图片视觉和内容特征成为可能。图片分析已被广泛应用于电子商务研究中。通过对图片分析的相关文献进行梳理,从图片特征提取的方法和应用两个方面展开综述,提出了一个基于图片视觉和内容特征研究与应用的分析框架,系统地阐述了图片分析在电子商务领域的应用现状。通过分析发现,现有相关研究主要关注图片的视觉或内容特征对个体偏好和消费行为的影响作用,它们结合的作用效果仍有待深入探索;并且多数研究集中于社交网站用户发布图片的一般分析,缺少对消费行为的进一步研究。最后总结了图片分析在电子商务领域中未来需要关注的研究和发展方向,为未来的研究提供一定的参考。

关键词: 图片分析, 电子商务, 深度学习, 视觉特征, 视觉内容分析

Abstract: The development of computer deep learning and big data mining technology makes it possible to effectively extract the visual and content features of massive photos.Photo analysis has been widely used in e-commerce research.Through combing the related literatures of photo analysis,this paper reviews the methods and applications of photo feature extraction,puts forward an analysis framework based on the research and application of photo visual and content features,and systematically expounds the application status of photo analysis in the field of e-commerce.Through analysis,it is found that the existing related research mainly focuses on the influence of the visual or content features of photos on individual preference and consumption behavior.The effect of their combination remains to be further explored.And most of the research focuses on the general analysis of the photos posted by users on social networking sites,and lacks of further research on consumption behavior.Finally,it summarizes the future research and development direction of photo analysis in the field of e-commerce,which provides a certain reference for future research.

Key words: Photo analysis, E-commerce, Deep learning, Visual features, Visual content analysis

中图分类号: 

  • TP399
[1] DIEHL K,ZAUBERMAN G,BARASCH A.How taking photos increases enjoyment of experiences [J].Journal of Personality and Social Psychology,2016,111(2):119-140.
[2] ARCHAK N,GHOSE A,IPEIROTIS P G.Deriving the pricing power of product features by mining consumer reviews [J].Management Science,2011,57(8):1485-1509.
[3] AHN J H,BAE Y S,JU J,et al.Attention adjustment,renewal,and equilibrium seeking in online search:An eye-tracking approach [J].Journal of Management Information Systems,2018,35(4):1218-1250.
[4] ZHANG S,LEE D,SINGH P V,et al.How much is an image worth?Airbnb property demand estimation leveraging large scale image analytics [OL].https://ssrn.com/abstract=2976021 or http://dx.doi.org/10.2139/ssrn.2976021,2017.
[5] CHI M,PAN M,WANG W.Impacts of cue consistency onshared accommodation bookings:Interaction between texts and images [J].Data Analysis and Knowledge Discovery,2020,4(11):74-83.
[6] LI X,WANG M,CHEN Y.The impact of product photo on online consumer purchase intention:An image-processing enabled empirical study[C]//Pacific Asia Conference on Information Systems.2014.
[7] WANG M,LI X,CHAU Y K.The impact of photo aesthetics on online consumer shopping behavior:An image-processing-enabled empirical study[C]//International Conference on Information Systems.2016.
[8] OUYANG W,WANG X,ZENG X,et al.Deepid-net:Defor-mable deep convolutional neural networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2015:2403-2412.
[9] SUN Y,WANG X,TANG X.Deeply learned face representations are sparse,selective,and robust[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2015.
[10] ZHOU B,LAPEDRIZA A,XIAO J,et al.Learning deep features for scene recognition using places database[C]//Advances in Neural Information Processing Systems.2014:487-495.
[11] BHATTACHARYA S,SUKTHANKAR R,SHAH M.Aframework for photo-quality assessment and enhancement based on visual aesthetics[C]//Proceedings of the 18th ACM International Conference on Multimedia.2010:271-280.
[12] DATTA R,JOSHI D,LI J,et al.Studying aesthetics in photographic images using a computational approach[C]//European Conference on Computer Vision.2006:288-301.
[13] DHAR S,ORDONEZ V,BERG T L.High level describable attributes for predicting aesthetics and interestingness[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2011:1657-1664.
[14] KE Y,TANG X,JING F.The design of high-level features for photo quality assessment[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.IEEE,2006:419-426.
[15] LUO W,WANG X,TANG X.Content-based photo quality assessment[C]//International Conference on Computer Vision.IEEE,2011:6-13.
[16] MARCHESOTTI L,PERRONNIN F,LARLUS D,et al.Asses-sing the aesthetic quality of photographs using generic image descriptors [C]//International Conference on Computer Vision.IEEE,2011:1784-1791.
[17] SU H H,CHEN T W,KAO C C,et al.Scenic photo quality assessment with bag of aesthetics-preserving features[C]//Proceedings of the 19th ACM international conference on Multimedia.2011:1213-1216.
[18] KARAYEV S,TRENTACOSTE M,HAN H,et al.Recognizing image style[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2014.
[19] LU X,LIN Z,JIN H,et al.Rapid:Rating pictorial aesthetics using deep learning[C]//Proceedings of the 22nd ACM international conference on Multimedia.2014:457-466.
[20] LU X,LIN Z,SHEN X,et al.Deep multi-patch aggregation network for image style,aesthetics,and quality estimation[C]//International Conference on Computer Vision.IEEE,2015.
[21] TANG H,JOSHI N,KAPOOR A.Blind image quality assessment using semi-supervised rectifier networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2014:2877-2884.
[22] TIAN X,DONG Z,YANG K,et al.Query-dependent aesthetic model with deep learning for photo quality assessment [J].IEEE Transactions on Multimedia,2015,17(11):2035-2048.
[23] DONG Z,SHEN X,LI H,et al.Photo quality assessment with DCNN that understands image well[C]//International Confe-rence on Multimedia Modeling.2015:524-535.
[24] LEE H J,HONG K S,KANG H,et al.Photo aesthetics analysis via DCNN feature encoding [J].IEEE Transactions on Multimedia,2017,19(8):1921-1932.
[25] KONG S,SHEN X,LIN Z,et al.Photo aesthetics ranking network with attributes and content adaptation[C]//European Conference on Computer Vision.2016:662-679.
[26] CELLI F,BRUNI E,LEPRI B.Automatic personality and interaction style recognition from Facebook profile pictures[C]//Proceedings of the 22nd ACM International Conference on Multimedia.2014:1101-1104.
[27] LIU L,PREOTIUC-PIETRO D,SAMANI Z R,et al.Analyzing personality through social media profile picture choice[C]//International Conference on Weblogs and Social Media.AAAI,2016.
[28] BHATTI S K,MUNEER A,LALI M I,et al.Personality anal-ysis of the USA public using Twitter profile pictures[C]//International Conference on Information and Communication Technologies.IEEE,2017.
[29] FERWERDA B,SCHEDL M,TKALCIC M.Predicting personality traits with Instagram pictures[C]//Proceedings of the 3rd Workshop on Emotions and Personality in Personalized Systems.2015:7-10.
[30] FERWERDA B,TKALCIC M.Predicting users' personalityfrom Instagram pictures:using visual and/or content features? [C]//Proceedings of the 26th Conference on User Modeling,Adaptation and Personalization.2018:157-161.
[31] SEGALIN C,PERINA A,CRISTANI M,et al.The pictures we like are our image:continuous mapping of favorite pictures into self-assessed and attributed personality traits [J].IEEE Tran-sactions on Affective Computing,2017,8(2):268-285.
[32] SIVAJI A,TZUAAN S S,YANG L T,et al.Hotel photo gallery and Malaysian travelers:Preliminary findings[C]//International Conference on User Science & Engineering.IEEE,2014.
[33] WANG M,LI X,CHAU P Y K.Leveraging image-processingtechniques for empirical research:Feasibility and reliability in online shopping context [J].Information Systems Frontiers,2020:1-20.
[34] STEPCHENKOVA S,ZHAN F.Visual destination images ofPeru:Comparative content analysis of DMO and user-generated photography [J].Tourism Management,2013,36:590-601.
[35] SONG S G,KIM D Y.A pictorial analysis of destination images on Pinterest:The case of Tokyo,Kyoto,and Osaka,Japan [J].Journal of Travel & Tourism Marketing,2016,33(5):687-701.
[36] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2016:770-778.
[37] ZHANG K,CHEN Y,LI C.Discovering the tourists' behaviors and perceptions in a tourism destination by analyzing photos' visual content with a computer deep learning model:The case of Beijing [J].Tourism Management,2019,75:595-608.
[38] REN M,VU H Q,LI G,et al.Large-scale comparative analyses of hotel photo content posted by managers and customers to review platforms based on deep learning:Implications for hospitali-ty marketers [J].Journal of Hospitality Marketing & Management,2021,30(1):96-119.
[39] FAN H,CAO Z,JIANG Y,et al.Learning deep face representation [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2014.
[40] ZHANG L,YAN Q,ZHANG L.A computational frameworkfor understanding antecedents of guests' perceived trust towards hosts on Airbnb [J].Decision Support Systems,2018,115:105-116.
[41] GARROD B.Exploring place perception:A photo-based analysis [J].Annals of Tourism Research,2008,35(2):381-401.
[42] CHUNG N,KOO C.The use of social media in travel information search [J].Telematics & Informatics,2015,32(2):215-229.
[43] KIM S B,KIM D Y,WISE K.The effect of searching and surfing on recognition of destination images on Facebook pages [J].Computers in Human Behavior,2014,30:813-823.
[44] HUNTER W C.The social construction of tourism online destination image:A comparative semiotic analysis of the visual representation of Seoul [J].Tourism Management,2016,54(2):221-229.
[45] PAN S,LEE J,TSAI H.Travel photos:Motivations,image dimensions,and affective qualities of places [J].Tourism Management,2014,40(1):59-69.
[46] WACKER A,GROTH A.Projected and perceived destinationimage of Tyrol on Instagram [M]//Information and Communication Technologies in Tourism.Berlin:Springer,2020:103-114.
[47] ZHANG K,CHEN Y,LIN Z.Mapping destination images and behavioral patterns from user-generated photos:A computer vision approach [J].Asia Pacific Journal of Tourism Research,2020,25(11):1199-1214.
[48] DENG N,LIU Y F,NIU Y,et al.Different perceptions of Beijing's destination images from tourists:An analysis of Flickr photos based on deep learning method [J].Resources Science,2019,41(3):416-429.
[49] CHEN T,BORTH D,DARRELL T,et al.DeepSentiBank:Visual sentiment concept classification with deep convolutional neural networks [EB/OL].(2014-10-30)[2018-09-30].https://arxiv.org/pdf/1410.8586v1.pdf.
[50] NEIDHARDT J,SEYFANG L,SCHUSTER R,et al.A picture-based approach to recommender systems [J].Information Technology & Tourism,2015,15(1):49-69.
[51] FIGUEREDO M,RIBEIRO J,CACHO N,et al.From photos to travel itinerary:A tourism recommender system for smart tourism destination[C]//2018 IEEE Fourth International Conference on Big Data Computing Service and Applications (BigData Service).IEEE,2018.
[52] SERTKAN M,NEIDHARDT J,WERTHNER H.From pic-
tures to travel characteristics:Deep learning-based profiling of tourists and tourism destinations [M]//Information and Communication Technologies in Tourism.Berlin:Springer,2020:142-153.
[53] CYR D,HEAD M,LARIOS H,et al.Exploring human images in website design:A multi-method approach [J].MIS Quarterly,2009,33(3):539-566.
[54] ZHU X,RAMANAN D.Face detection,pose estimation,andlandmark localization in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2012:2879-2886.
[55] XIA H,PAN X,ZHOU Y,et al.Creating the best first impression:Designing online product photos to increase sales [J].Decision Support Systems,2020,131:113235-113249.
[56] LUCA M.Designing online marketplaces:Trust and reputation mechanisms [J].Innovation Policy and the Economy,2017,17:77-93.
[57] FORMAN C,GHOSE A,WIESENFELD B.Examining the relationship between reviews and sales:The role of reviewer identity disclosure in electronic markets [J].Information Systems Research,2008,19(3):291-313.
[58] SWAMI V,FURNHAM A.The psychology of physical attraction [M].London:Routledge/Taylor & Francis Group,2008.
[59] KNUTSON B.Facial Expressions of Emotion Influence Interpersonal Trait Inferences [J].Journal of Nonverbal Behavior,1996,20(3):165-182.
[60] ERT E,FLEISCHER A,MAGEN N.Trust and reputation in the sharing economy:The role of personal photos in Airbnb [J].Tourism Management,2016,55:62-73.
[61] FAGERSTRØM A,PAWAR S,SIGURDSSON V,et al.Thatpersonal profile image might jeopardize your rental opportunity! On the relative impact of the seller's facial expressions upon buying behavior on Airbnb [J].Computers in Human Behavior,2017,72:123-131.
[62] JAEGER B,SLEEGERS W W A,EVANS A M,et al.Theeffects of facial attractiveness and trustworthiness in online peer-to-peer markets [J].Journal of Economic Psychology,2018,75(A):102125-102135.
[63] DENG C,RAVICHANDRAN T.To smile or not? The effect of facial expression on service demand in sharing economy platforms[C]//Americas Conference on Information Systems.2020.
[1] 冯芙蓉, 张兆功. 目标轮廓检测技术新进展[J]. 计算机科学, 2021, 48(6A): 1-9.
[2] 崔雯昊, 蒋慕蓉, 杨磊, 傅鹏铭, 朱凌霄. 结合MCycleGAN与RFCNN实现太阳斑点图高分辨重建[J]. 计算机科学, 2021, 48(6A): 38-42.
[3] 和青芳, 王慧, 程光. 自适应小数据集乳腺癌病理组织分类研究[J]. 计算机科学, 2021, 48(6A): 67-73.
[4] 刘汉卿, 康晓东, 李博, 张华丽, 冯继超, 韩俊玲. 利用深度学习网络对医学影像分类识别的比较研究[J]. 计算机科学, 2021, 48(6A): 89-94.
[5] 韩斌, 曾松伟. 基于多特征融合和卷积神经网络的植物叶片识别[J]. 计算机科学, 2021, 48(6A): 113-117.
[6] 裴莹, 李天祥, 王鏖清, 付加胜, 韩霄松. 基于新闻的国际天然气价格趋势预测方法[J]. 计算机科学, 2021, 48(6A): 235-239.
[7] 牛康力, 谌雨章, 张龚平, 谭前程, 王绎冲, 罗美琪. 基于深度学习的无人机航拍车流量监测[J]. 计算机科学, 2021, 48(6A): 275-280.
[8] 杨进才, 曹元, 胡泉, 沈显君. 基于Transformer模型与关系词特征的汉语因果类复句关系自动识别[J]. 计算机科学, 2021, 48(6A): 295-298.
[9] 曾伟良, 陈漪皓, 姚若愚, 廖睿翔, 孙为军. 时空图注意力网络在交叉口车辆轨迹预测的应用[J]. 计算机科学, 2021, 48(6A): 334-341.
[10] 李达, 雷迎科, 张海川. 基于LTE网络的室外指纹定位[J]. 计算机科学, 2021, 48(6A): 404-409.
[11] 王丹妮, 陈伟, 羊洋, 宋爽. 基于高斯增强和迭代攻击的对抗训练防御方法[J]. 计算机科学, 2021, 48(6A): 509-513.
[12] 钱基德, 熊仁和, 王乾垒, 杜冬, 王在俊, 钱基业. 边缘计算在飞行训练中的应用[J]. 计算机科学, 2021, 48(6A): 603-607.
[13] 刘昱彤, 李鹏, 孙云云, 胡素君. 基于深度动态联合自适应网络的图像识别方法[J]. 计算机科学, 2021, 48(6): 131-137.
[14] 陈晋音, 邹健飞, 袁俊坤, 叶林辉. 面向恶意软件检测模型的黑盒对抗攻击方法[J]. 计算机科学, 2021, 48(5): 60-67.
[15] 张少钦, 杜圣东, 张晓博, 李天瑞. 融合多模态信息的社交网络谣言检测方法[J]. 计算机科学, 2021, 48(5): 117-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 方磊, 武泽慧, 魏强. 二进制代码相似性检测技术综述[J]. 计算机科学, 2021, 48(5): 1 -8 .
[2] 朱雨, 庞建民, 徐金龙, 陶小涵, 王军. 面向SW26010处理器的三维Stencil自适应分块参数算法[J]. 计算机科学, 2021, 48(6): 10 -18 .
[3] 冯芙蓉, 张兆功. 目标轮廓检测技术新进展[J]. 计算机科学, 2021, 48(6A): 1 -9 .
[4] 孙正, 张小雪. 生物光声成像中声反射伪影抑制方法的研究进展[J]. 计算机科学, 2021, 48(6A): 10 -14 .
[5] 周欣, 刘硕迪, 潘薇, 陈媛媛. 自然交通场景中的车辆颜色识别[J]. 计算机科学, 2021, 48(6A): 15 -20 .
[6] 黄雪冰, 魏佳艺, 沈文宇, 凌力. 基于自适应加权重复值滤波和同态滤波的MR图像增强[J]. 计算机科学, 2021, 48(6A): 21 -27 .
[7] 江妍, 马瑜, 梁远哲, 王原, 李光昊, 马鼎. 基于分数阶麻雀搜索优化OTSU肺组织分割算法[J]. 计算机科学, 2021, 48(6A): 28 -32 .
[8] 张子丞, 谭志苇, 张晨瑞, 王旋, 刘晓璇, 俞一彪. 基于高低频带对数能量谱比贝叶斯决策的语音端点检测[J]. 计算机科学, 2021, 48(6A): 33 -37 .
[9] 崔雯昊, 蒋慕蓉, 杨磊, 傅鹏铭, 朱凌霄. 结合MCycleGAN与RFCNN实现太阳斑点图高分辨重建[J]. 计算机科学, 2021, 48(6A): 38 -42 .
[10] 田洋, 毕秀丽, 肖斌, 李伟生, 马建峰. 基于离散切比雪夫变换的图像接缝裁剪篡改检测[J]. 计算机科学, 2021, 48(6A): 43 -50 .