计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 481-484.doi: 10.11896/jsjkx.210100063

• 网络& 通信 • 上一篇    下一篇

基于采样控制和输入饱和的不确定复杂网络同步研究

赵曼宇, 叶军   

  1. 南京邮电大学理学院 南京210023
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 叶军(yj8422092@163.com)
  • 作者简介:1040321777@qq.com
  • 基金资助:
    国家自然科学基金(61971234);南京邮电大学校内基金(NY220209)

Synchronization of Uncertain Complex Networks with Sampled-data and Input Saturation

ZHAO Man-yu, YE Jun   

  1. School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:ZHAO Man-yu,born in 1994,master's degree.Her main research interests include complex network synchronization control and multi-agent system consistency.
    YE Jun,born in 1981,Ph.D,associate professor.His main research interests include pattern recognition,machine learning,and image processing.
  • Supported by:
    National Natural Science Foundation of China(61971234) and Nanjing University of Posts and Telecommunications Foundation(NY220209).

摘要: 在实际网络系统中,广泛存在外部的干扰、参数波动等不确定现象,会导致系统无法实现同步,甚至会破坏系统的稳定性。因此研究不确定复杂动态网络的同步问题具有重要的意义。针对一类非线性不确定复杂动态网络,文中研究其在采样控制和输入饱和的条件下实现同步的问题。首先,建立非线性不确定复杂动态网络模型,其次通过引入一个领导者,设计了包含输入饱和的采样控制协议。然后构造合适的时间依赖Lyapunov函数,通过运用稳定性理论、积分不等式方法和线性矩阵不等式方法,证明了非线性不确定复杂动态网络在一定条件下可以实现同步,即每个跟随者最终都能追踪到领导者,并给出了实现同步的充分判据。最后,通过数值仿真验证了所得理论结果的正确性和有效性。

关键词: 不确定复杂网络, 采样控制, 输入饱和, 李雅普诺夫函数, 同步

Abstract: In actual network systems,there are widespread external interference and parameter mutations and other uncertain phenomena,which will cause the system to fail to achieve synchronization,and even destroy the stability of the system.Therefore,it is important to study uncertain complex networks.This paper discusses the synchronization problem of nonlinear uncertain complex dynamical networks with sampled-data and input saturation.Firstly,we establish a nonlinear and uncertain complex network model.Secondly,a leader is introduced to design a sampled-data control protocol with input saturation.By constructing an appropriate time-dependent Lyapunov functional and applying the stability theory,integral inequality method and the linear matrix inequality method,it is proved that the nonlinear uncertain complex dynamical networks can achieve synchronization under certain conditions,that is every follower can track the leader,and the sufficient criteria for achieving synchronization of nonlinear uncertain complex networks is derived.Finally,simulation examples are provided to verify the effectiveness and validity of the theoretical results.

Key words: Uncertain complex networks, Sampled-data control, Input saturation, Lyapunov function, Synchronization

中图分类号: 

  • TP13
[1]WATTS D J,STROGATZ S H.Collective Dynamics of ‘Small-world' Networks[J].Nature,1998,393(6684):440-442.
[2]KARTHICK S A,SAKTHIVEL R,ALZAHRANI F,et al.Synchronization of Semi Markov Coupled Neural Networks with Impulse Effects and Leakage Delay[J].Neurocomputing,2020,386:221-231.
[3]HUANG Y L,WANG S X.Synchronization in an Array of Spatial Diffusion Coupled Reaction-diffusion Neural Networks via Pinning Control[J].International Journal of Systems Science,2018,49(5):1103-1118.
[4]HUANG Y,BAO H B.Master-slave Synchronization of Complex-valued Delayed Chaotic Lur'e Systems with Sampled-data Control[J].Applied Mathematics and Computation,2020,379.
[5]YANG H H,WANG Z X,XIAO M,et al.Quasi-synchronization of Heterogeneous Dynamical Networks with Sampled-data and Input Saturation[J].Neurocomputing,2019,339:130-138.
[6]SHAO H,ZHAO J.Control and Optimization of Sampled-data Systems with Quantization and Actuator Saturation[J].Journal of Systems Science and Complexity,2017,30(6):1242-1257.
[7]WU J,HUANG L.Global Stabilization of Linear Systems Subject to Input Saturation and Time Delays[J].Journal of the Franklin Institute,2021,358(1):633-649.
[8]GE C,SHI Y,PARK J H,et al.Robust H-infinity Stabilization for T-S Fuzzy Systems with Time-varying Delays and Memory Sampled-data Control[J].Applied Mathematics and Computation,2019,346:500-512.
[9]MENG L,YANG D,ZHAO Q.Synchronization of UncertainComplex Dynamical Networks[J].International Journal of Software Engineering and Knowledge Engineering,2019,29(7):923-939.
[10]LIANG S,WU R,CHEN L.Adaptive Pinning Synchronization in Fractional-order Uncertain Complex Dynamical Networks with Delay[J].Physica A:Statistical Mechanics and its Applications,2016,444:49-62.
[11]KIM J H.Further Improvement of Jensen Inequality and Application to Stability of Time-delayed Systems[J].Automatica,2016,64:121-125.
[12]GOMES D A,SILVA J J M,TARBOURIECH S.Antiwindup Design with Guaranteed Regions of Stability:An LMI-based Approach[J].IEEE Transactions on Automatic Control,2005,50(1):106-111.
[1] 卢永超, 王斌翊, 胡江峰, 穆阳, 任俊龙. 综合电子时间同步技术研究[J]. 计算机科学, 2021, 48(6A): 629-632.
[2] 钱光明, 易超. 一种多节点实时无线连接方案[J]. 计算机科学, 2021, 48(11A): 446-451.
[3] 王秉洲, 王慧斌, 沈洁, 张丽丽. 基于自适应渐消UKF的FastSLAM算法[J]. 计算机科学, 2020, 47(9): 213-218.
[4] 朱凯, 毋国庆, 袁梦霆. 关于同步部分规约的有限自动机的优化问题的近似难度[J]. 计算机科学, 2020, 47(5): 14-21.
[5] 孙士远, 何勇. 自动机终结字查找算法的设计与实现[J]. 计算机科学, 2020, 47(11A): 599-603.
[6] 王俊雅,李甲地,李德权. 多个体切换网络中带有时延通信的分布式次梯度优化算法[J]. 计算机科学, 2019, 46(7): 81-85.
[7] 许勇, 张晓荣, 祝玉军. 基于信道评估的IEEE 802.15.4e TSCH快速接入方案[J]. 计算机科学, 2019, 46(6A): 332-335.
[8] 杨萍, 王生原. 同步数据流语言可信编译器的研究进展[J]. 计算机科学, 2019, 46(5): 21-28.
[9] 陈雪萍, 何勇, 肖芬芳. 一类同步自动机及损耗函数分析[J]. 计算机科学, 2019, 46(11A): 535-538.
[10] 金瑞, 刘作学. 一种采用时隙对准方式的TDMA自组网同步协议[J]. 计算机科学, 2018, 45(6): 84-88.
[11] 邓兆琨, 陆余良, 朱凯龙, 黄晖. 基于符号执行技术的网络程序漏洞检测系统[J]. 计算机科学, 2018, 45(11A): 325-329.
[12] 甘勇, 王凯, 贺蕾. 一种全新的RFID标签所有权转移协议[J]. 计算机科学, 2018, 45(11A): 369-372.
[13] 张帅, 徐顺, 刘倩, 金钟. 基于GPU的分子动力学模拟Cell Verlet算法实现及其并行性能分析[J]. 计算机科学, 2018, 45(10): 291-294.
[14] 李甲地,李德权. 切换网络分布式次梯度优化算法[J]. 计算机科学, 2018, 45(1): 228-232.
[15] 杨伟,王沁,万亚东,何杰. IEEE802.15.4e 标准的安全多跳时间同步协议设计[J]. 计算机科学, 2017, 44(3): 175-181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 冯芙蓉, 张兆功. 目标轮廓检测技术新进展[J]. 计算机科学, 2021, 48(6A): 1 -9 .
[2] 孙正, 张小雪. 生物光声成像中声反射伪影抑制方法的研究进展[J]. 计算机科学, 2021, 48(6A): 10 -14 .
[3] 周欣, 刘硕迪, 潘薇, 陈媛媛. 自然交通场景中的车辆颜色识别[J]. 计算机科学, 2021, 48(6A): 15 -20 .
[4] 黄雪冰, 魏佳艺, 沈文宇, 凌力. 基于自适应加权重复值滤波和同态滤波的MR图像增强[J]. 计算机科学, 2021, 48(6A): 21 -27 .
[5] 江妍, 马瑜, 梁远哲, 王原, 李光昊, 马鼎. 基于分数阶麻雀搜索优化OTSU肺组织分割算法[J]. 计算机科学, 2021, 48(6A): 28 -32 .
[6] 冯霞, 胡志毅, 刘才华. 跨模态检索研究进展综述[J]. 计算机科学, 2021, 48(8): 13 -23 .
[7] 周文辉, 石敏, 朱登明, 周军. 基于残差注意力网络的地震数据超分辨率方法[J]. 计算机科学, 2021, 48(8): 24 -31 .
[8] 朝乐门, 尹显龙. 人工智能治理理论及系统的现状与趋势[J]. 计算机科学, 2021, 48(9): 1 -8 .
[9] 雷羽潇, 段玉聪. 面向跨模态隐私保护的AI治理法律技术化框架[J]. 计算机科学, 2021, 48(9): 9 -20 .
[10] 王俊, 王修来, 庞威, 赵鸿飞. 面向科技前瞻预测的大数据治理研究[J]. 计算机科学, 2021, 48(9): 36 -42 .