计算机科学 ›› 2022, Vol. 49 ›› Issue (1): 204-211.doi: 10.11896/jsjkx.210100128

• 计算机图形学&多媒体 • 上一篇    下一篇

一种高精度路面裂缝检测网络结构:Crack U-Net

祝一帆, 王海涛, 李可, 吴贺俊   

  1. 中山大学计算机学院 广州510006
  • 收稿日期:2021-01-18 修回日期:2021-05-10 出版日期:2022-01-15 发布日期:2022-01-18
  • 通讯作者: 吴贺俊(wuhejun@mail.sysu.edu.cn)
  • 作者简介:zhuyf6@mail2.sysu.edu.cn
  • 基金资助:
    国家自然科学基金(61672552);广州市科技计划项目(202002020045)

Crack U-Net:Towards High Quality Pavement Crack Detection

ZHU Yi-fan, WANG Hai-tao, LI Ke, WU He-jun   

  1. School of Computer Science and Engineering,SunYet-San University,Guangzhou 510006,China
  • Received:2021-01-18 Revised:2021-05-10 Online:2022-01-15 Published:2022-01-18
  • About author:ZHU Yi-fan,born in 1997,postgra-duate.Her main research interests include computer vision and crack detection.
    WU He-jun,born in 1974,Ph.D,asso-ciate professor.His main research in-terests include intelligent perception computing,new mobile Internet of things,autonomous robot clusters.
  • Supported by:
    Shanghai Science and Technology Program(20511100600) and National Natural Science Foundation of China (62076094).

摘要: 路面裂缝对行车安全有很大的潜在威胁,以往的人工检测方法效率不高。现有裂缝检测方法模型泛化能力低,在复杂背景下的裂缝分割能力差且效率不高。为了解决这些问题,文中提出了一种基于编码器-解码器结构的新改进型网络结构Crack U-Net,目的是提高路面裂缝检测的模型泛化性以及检测精度。首先,Crack U-Net用密集连接结构增强了基于编码器-解码器的网络U-Net模型,在以往结构的基础上提高了网络各层特征信息利用率,增强了模型的鲁棒性;其次,Crack U-Net使用由残差块和mini-U组成的Crack U-block作为网络的基础卷积模块,相比传统双层卷积层,Crack U-block可以提取出更丰富的裂缝特征;最后,在Crack U-Net的下采样节点中使用了空洞卷积替代传统卷积核,以充分捕获图像边缘的裂缝特征。为验证Crack U-Net模型的有效性,在公开裂缝数据集上进行了一系列测试。实验结果显示,Crack U-Net在数据集上的AIU值比以往方法提升了2.2%,在裂缝分割精度、泛化性上都优于现有方法。另外,参数轻量化部分的实验证明,Crack U-Net可以进行很大程度的模型剪枝,无人机等移动设备将可满足剪枝后的Crack U-Net模型所需的计算资源。

关键词: 道路路面, 裂缝检测, 深度学习, 图像分割

Abstract: Pavement cracks constitute a major potential threat to driving safety.Previous manual detection methods are highly subjective and inefficient.Current computer vision methods have limited applications in crack detection.Existing models have poor generalization capabilities and limited detection effects.To address this problem,a dense network structure of pavement crack detection,called Crack U-Net,is proposed to improve the model generalization capabilities and detection accuracy.Firstly,the dense connection structure of Crack U-Net adopts the network design from the encoder-decoder backbone network U-Net.Similar to the encoder-decoder backbone network,this structure of Crack U-Net is able to improve the utilization of feature information and to enhance the robustness of the model,as well.Secondly,the Crack U-block composed of residual blocks and mini-U is proposed as the basic convolution module of the network,which can extract more abundant crack features compared with the traditional dou-ble-layer convolution layer.Finally,dilated convolution is used in the middle layer of up sampling and down sampling in the network to fully capture the crack features,which is at the edge if the image.Crack U-Net runs on public fracture dataset and produces a series of experimental results.The experimental results show that the AIU value of this method on the dataset is 2.2% higher than the previous method,and it is better than the existing fracture segmentation accuracy and generalization.The experimental results also show that Crack U-Net model can be pruned,and the pruned model is suitable for loading to mobile devices for road crack detection.

Key words: Crack detection, Deep learning, Image segmentation, Road pavement

中图分类号: 

  • TP391
[1]LI H F,WU Z L,NIE J J,et al.Automatic crack detection algorithm for airport pavement based on depth image[J].Journal of Traffic and Transportation Engineering,2021,20(6):1-12.
[2]TIAN W,SHEN H,LI X,et al.Research on corridor surface crack detection technology based on image processing[J].Electronic Design Engineering,2020,28(5):148-151,156.
[3]MARQUES A,CORREIA P L.Automatic road pavement crack detection using SVM[J].Lisbon,Portugal:Dissertation for the Master of Science Degree in Electrical and Computer Enginee-ring at Instituto Superior Técnico,2012,31(4):157-170.
[4]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Compu-ter-assisted Intervention.Cham:Springer,2015:234-241.
[5]ZHOU Z,SIDDIQUEE M M R,TAJBAKHSH N,et al.Unet++:Redesigning skip connections to exploit multiscale features in image segmentation[J].IEEE Transactions on Medical Imaging,2019,39(6):1856-1867.
[6]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778.
[7]YU F,KOLTUN V.Multi-scale context aggregation by dilated convolutions[J].arXiv:1511.07122.
[8]CHA Y J,CHOI W,BÜYÜKÖZTÜRK O.Deep learning-based crack damage detection using convolutional neural networks[J].Computer-Aided Civil and Infrastructure Engineering,2017,32(5):361-378.
[9]PAULY L,PEEL H,LUO S,et al.Deeper Networks for Pavement Crack Detection[C]//34th International Symposium in Automation and Robotics in Construction.2017:479-485.
[10]TANG J,MAO Y,WANG J,et al.Multi-task enhanced damcrack image detection based on faster R-CNN[C]//2019 IEEE 4th International Conference on Image,Vision and Computing (ICIVC).IEEE,2019:336-340.
[11]SUH G,CHA Y J.Deep faster R-CNN-based automated detection and localization of multiple types of damage[C]//Sensors and Smart Structures Technologies for Civil,Mechanical and Aerospace Systems 2018.International Society for Optics and Photonics,2018,10598:105980T.
[12]CHA Y J,CHOI W,SUH G,et al.Autonomous structural vi-sual inspection using region-based deep learning for detecting multiple damage types[J].Computer-Aided Civil and Infrastructure Engineering,2018,33(9):731-747.
[13]ZEILER M D,FERGUS R.Visualizing and understanding con-volutional networks[C]//European Conference on Computer Vision.Cham:Springer,2014:818-833.
[14]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenetclassification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.
[15]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:3431-3440.
[16]BADRINARAYANAN V,KENDALL A,CIPOLLA R.Segnet:A deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495.
[17]YANG F,ZHANG L,YU S,et al.Feature pyramid and hierarchical boosting network for pavement crack detection[J].IEEE Transactions on Intelligent Transportation Systems,2019,21(4):1525-1535.
[18]XIE S,TU Z.Holistically-nested edge detection[C]//Procee-dings of the IEEE International Conference on Computer Vision.2015:1395-1403.
[19]REN Y,HUANG J,HONG Z,et al.Image-based concrete crack detection in tunnels using deep fully convolutional networks[J].Construction and Building Materials,2020,234:117367.
[20]LIU Z,CAO Y,WANG Y,et al.Computer vision-based concrete crack detection using U-net fully convolutional networks[J].Automation in Construction.2019,104:129-139.
[21]QU Z,XIE Y.Concrete Pavement Crack Detection Algorithm Based on Full U-net[J].Computer Science,2021,48(4):187-191.
[22]HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4700-4708.
[23]LEE C Y,XIE S,GALLAGHER P,et al.Deeply-supervised nets[C]//Artificial Intelligence and Statistics.2015:562-570.
[24]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2980-2988.
[25]SHI Y,CUI L,QI Z,et al.Automatic road crack detection using random structured forests[J].IEEE Transactions on Intelligent Transportation Systems,2016,17(12):3434-3445.
[26]LIU Y,CHENG M M,HU X,et al.Richer convolutional features for edge detection[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2017:3000-3009.
[1] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[2] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[3] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[4] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[5] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[6] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[7] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[8] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[9] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[10] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[11] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[12] 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫.
小样本雷达辐射源识别的深度学习方法综述
Survey of Deep Learning for Radar Emitter Identification Based on Small Sample
计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138
[13] 刘伟业, 鲁慧民, 李玉鹏, 马宁.
指静脉识别技术研究综述
Survey on Finger Vein Recognition Research
计算机科学, 2022, 49(6A): 1-11. https://doi.org/10.11896/jsjkx.210400056
[14] 孙福权, 崔志清, 邹彭, 张琨.
基于多尺度特征的脑肿瘤分割算法
Brain Tumor Segmentation Algorithm Based on Multi-scale Features
计算机科学, 2022, 49(6A): 12-16. https://doi.org/10.11896/jsjkx.210700217
[15] 康雁, 徐玉龙, 寇勇奇, 谢思宇, 杨学昆, 李浩.
基于Transformer和LSTM的药物相互作用预测
Drug-Drug Interaction Prediction Based on Transformer and LSTM
计算机科学, 2022, 49(6A): 17-21. https://doi.org/10.11896/jsjkx.210400150
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!