计算机科学 ›› 2022, Vol. 49 ›› Issue (3): 99-104.doi: 10.11896/jsjkx.210200170

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于评论和物品描述的深度学习推荐算法

王美玲, 刘晓楠, 尹美娟, 乔猛, 荆丽娜   

  1. 数学工程与先进计算国家重点实验室(信息工程大学) 郑州450002
  • 收稿日期:2021-02-26 修回日期:2021-08-22 出版日期:2022-03-15 发布日期:2022-03-15
  • 通讯作者: 刘晓楠(prof.liu.xn@foxmail.com)
  • 作者简介:(751882186@qq.com)

Deep Learning Recommendation Algorithm Based on Reviews and Item Descriptions

WANG Mei-ling, LIU Xiao-nan, YIN Mei-juan, QIAO Meng, JING Li-na   

  1. State Key Laboratory of Mathematical Engineering and Advanced Computing (Information Engineering University),Zhengzhou 450002,China
  • Received:2021-02-26 Revised:2021-08-22 Online:2022-03-15 Published:2022-03-15
  • About author:WANG Mei-ling,born in 1995,postgraduate.Her main research interests include deep learning and recommendation algorithm.
    LIU Xiao-nan,born in 1977,Ph.D,associate professor,master’s supervisor,is a member of China Computer Federation.His main research interests include quantum algorithm and high-perfor-mance parallel computation.

摘要: 评论文本中蕴含着丰富的用户和物品信息,将其应用于推荐算法有助于缓解数据稀疏问题,提高推荐准确度。然而,现有的基于评论的推荐模型对评论文本的挖掘不够充分和有效,并且大多忽视了用户兴趣随时间的迁移和蕴含物品属性的物品描述文档,使得推荐结果不够准确。基于此,文中提出了一种基于深度语义挖掘的推荐模型(Deep Semantic Mining based Recommendation,DSMR),通过深度挖掘评论文本和物品描述文档的语义信息,更精确地提取用户特征和物品属性特征,从而实现更准确地推荐。首先,所提模型利用BERT预训练模型来处理评论文本和物品描述文档,深度挖掘用户特征和物品属性,有效缓解了数据稀疏和物品冷启动问题;然后,利用前向LSTM来关注用户偏好随时间产生的变化,得到了更精确的推荐;最后,在模型训练阶段,将实验数据按1~5分1∶1∶1∶1∶1等量随机抽取,保证每个分值的数据量相等,使结果更加准确,模型鲁棒性更强。在4个常用的亚马逊公开数据集上进行实验,结果表明,以均方根误差为评价指标,DSMR推荐结果的误差比2个仅基于评分数据的经典推荐模型至少平均降低了11.95%,同时优于基于评论文本的3个最新推荐模型,且比其中最优的模型平均降低了5.1%。

关键词: 冷启动, 评论文本, 深度学习, 数据稀疏性, 推荐算法, 物品描述

Abstract: Reviews contain rich user and item information,which helps to alleviate the problem of data sparsity.However,the existing recommendation model based on reviews is not sufficient and effective enough to mine the review texts,and most of them ignore the migration of user interest over time and the item description documents containing the item attribute,which makes the recommendation result not accurate enough.In this paper,a deep semantic mining based recommendation model (DSMR) is proposed.By mining the semantic information of review texts and item description documents in depth,user characteristics and item attributes can be extracted more accurately,so as to realize more accurate recommendation.Firstly,the BERT pre-training model is used to process the comment text and item description document,and the user characteristics and item attributes are excavated deeply,which effectively alleviated the problems of data sparse and item cold start.Then,the forward LSTM is used to pay attention to the change of user preferences over time,and more accurate recommendations are obtained.Finally,in the model training stage,the experimental data are randomly selected from 1 to 5 points at 1∶1∶1∶1∶1 to ensure the same amount of data for each score value,so as to make the results more accurate and the model more robust.Experiments on four commonly used Amazon open datasets show that the root mean square error (RMSE) of DSMR is at least 11.95% lower than the two classical recommendation models based only on rating data,and it is better than the three new recommendation models based only on review text,and 5.1% lower than the optimal model.

Key words: Cold start, Data sparsity, Deep learning, Item description, Recommendation algorithm, Review

中图分类号: 

  • TP391
[1]KIM D,PARK C,OH J,et al.Convolutional matrix factorization for document context-aware recommendation[C]//Proceedings of the 10th ACM Conference on Recommender Systems.ACM,2016:233-240.
[2]WANG C,BLEI D M.Collaborative Topic Modeling for Recommending Scientific Articles[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2011:21-24.
[3]MCAULEY J,LESKOVEC J.Hidden factors and hidden topics:understanding rating dimensions with review text[C]//Procee-dings of the ACM Conference on Recommender Systems.ACM,2013:165-172.
[4]BAO Y,FANG H,ZHANG J.Topicmf:Simultaneously exploiting ratings and reviews for recommendation[C]//Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence.AAAI Press,2014:2-8.
[5]TAN Y,ZHANG M,LIU Y,et al.Rating-boosted latent topics:Understanding users and items with ratings and reviews[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence.2016:2640-2646.
[6]LING G,LYU M R,KING I.Ratings meet reviews,a combined approach to recommend[C]//Proceedings of the ACM Confe-rence on Recommender Systems (RecSys).ACM,2014:105-112.
[7]CATHERINE R,COHEN W.Transnets:Learning to transform for recommendation[C]//Proceedings of the 11th ACM Conference on Recommender Systems.ACM,2017:288-296.
[8]BLEI D M,NG A,JORDAN M I.Latent dirichlet allocation[J].Journal of Machine Learning Research,2003,3(4/5):993-1022.
[9]LEE D D,SEUNG H S.Algorithms for Non-negative MatrixFactorization[C]//International Conference on Neural Information Processing Systems.MIT Press,2000:556-562.
[10]ZHENG L,NOROOZI V,YU P S.Joint deep modeling of users and items using reviews for recommendation[C]//Proceedings of the Tenth ACM International Conference on Web Search and Data Mining.ACM,2017:425-434.
[11]KIM D,PARK C,OH J,et al.Convolutional Matrix Factorization for Document Context-Aware Recommendation[C]//ACM Conference.ACM,2016:233-240.
[12]SEO S,HUANG J,YANG H,et al.Interpretable Convolutional Neural Networks with Dual Local and Global Attention for Review Rating Prediction[C]//The Eleventh ACM Conference.ACM,2017:297-305.
[13]WU L,QUAN C,LI C,et al.A context-aware user-item representation learning for item recommendation[J].ACM Transactions on Information Systems (TOIS),2019,37(2):1-29.
[14]DAI A M,LE Q V.Semi-supervised Sequence Learning[J].MIT Press,2015.
[15]CHEN C,ZHANG M,LIU Y,et al.Neural attentional rating regression with review-level explanations[C]//Proceedings of the 2018 World Wide Web Conference.2018:1583-1592.
[16]TAY Y,LUU A T,HUI S C.Multi-pointer co-attention net-works for recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:2309-2318.
[17]CHEN X,ZHANG Y,QIN Z.Dynamic Explainable Recommendation Based on Neural Attentive Models[J].Proceedings of the AAAI Conference on Artificial Intelligence,2019,33:53-60.
[18]DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[J].arXiv:1810.04805,2018.
[19]CAO S,YANG N,LIU Z.Online news recommender based on stacked auto-encoder[C]//ACIS 16th International Conference on Computer and Information Science (ICIS).IEEE,2017:721-726.
[20]WANG H,WANG N,YEUNG D Y.Collaborative Deep Lear-ning for Recommender Systems[C]//KDD 2015.ACM,2015:1235-1244.
[21]BAHDANAU D,CHO K,BENGIO Y.Neural Machine Translation by Jointly Learning to Align and Translate[J].arXiv:1409.0473,2014.
[22]GEHRING J,AULI M,GRANGIER D,et al.Convolutional sequence to sequence learning[J].arXiv:1705.03122,2017.
[23]BAHDANAU D,CHO K,BENGIO Y.Neural Machine Translation by Jointly Learning to Align and Translate[J].Computer Ence,2014.
[24]HERMANN K M,KOCISKY T,GREFENSTETTE E,et al.Teaching machines to read and comprehend[C]//Advances in Neural Information Processing Systems.MIT Press,2015:1693-1701.
[25]SEO M,KEMBHAVI A,FARHADI A,et al.Bidirectional attention flow for machine comprehension[J].arXiv:1611.01603,2018.
[26]AMODEI D,ANANTHANARAYANAN S,ANUBHAI R,et al.Deep Speech 2:End-to-End Speech Recognition in English and Mandarin[C]//ICML.2015.
[27]LU Y,DONG R,SMYTH B.Coevolutionary recommendationmodel:Mutual learning between ratings and reviews[C]//Proceedings of the 2018 World Wide Web Conference.2018:773-782.
[28]CHEN J,ZHANG H,HE X,et al.Attentive Collaborative Filtering:Multimedia Recommendation with Item-and Component-Level Attention[C]//International ACM Sigir Conference.ACM,2017:335-344.
[29]VASWANI A,SHAZEER N,PARMAR N,et al.AttentioniskCM0lAll You Need[J].arXiv:1706.03762,2017.
[30]PETERS M,NEUMANN M,IYYER M,et al.Deep Contextua-lized Word Representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1 (Long Papers).2018.
[31]RADFORD A,NARASIMHAN K,SALIMANS T,et al.Improving language understanding with unsupervised learning[R].Technical report,OpenAI,2018.
[32]KINGMA D,BA J.Adam:A Method for Stochastic Optimization[J].arXiv:1412.6980,2014.
[33]KOREN Y,BELL R,VOLINSKY C.Matrix FactorizationTechniques for Recommender Systems[J].Computer,2009,42(8):30-37.
[34]SALAKHUTDINOV R,MNIH A.Probabilistic matrix factorization[C]//Proceedings of the 20th International Conference on Neural Information Processing Systems.2007:1257-1264.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[3] 张佳, 董守斌.
基于评论方面级用户偏好迁移的跨领域推荐算法
Cross-domain Recommendation Based on Review Aspect-level User Preference Transfer
计算机科学, 2022, 49(9): 41-47. https://doi.org/10.11896/jsjkx.220200131
[4] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[5] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[6] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[7] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[8] 方义秋, 张震坤, 葛君伟.
基于自注意力机制和迁移学习的跨领域推荐算法
Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning
计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011
[9] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[10] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[11] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[12] 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫.
小样本雷达辐射源识别的深度学习方法综述
Survey of Deep Learning for Radar Emitter Identification Based on Small Sample
计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138
[13] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[14] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[15] 王君锋, 刘凡, 杨赛, 吕坦悦, 陈峙宇, 许峰.
基于多源迁移学习的大坝裂缝检测
Dam Crack Detection Based on Multi-source Transfer Learning
计算机科学, 2022, 49(6A): 319-324. https://doi.org/10.11896/jsjkx.210500124
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!