计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 11-16.doi: 10.11896/jsjkx.210500151
宁懿昕, 谢辉, 姜火文
NING Yi-xin, XIE Hui, JIANG Huo-wen
摘要: 社区结构是复杂网络中普遍存在的拓扑特性之一,发现社区结构是复杂网络分析的基本任务。社区发现旨在将网络划分为多个子结构,对于理解网络、揭示网络的潜在功能有着重要作用。图神经网络是一种处理图结构数据的模型,具有从图中对数据进行特征提取和表示的优势,已经成为人工智能和大数据领域的重要研究方向。网络数据就是典型的图结构数据,使用图神经网络模型解决社区发现问题,是社区发现研究的一个新方向。首先对GNN模型进行深入探讨,分析GNN社区发现过程,并从重叠社区和非重叠社区这两个方面详细讨论现有GNN社区发现取得的进展以及未来可研究的方向。
中图分类号:
[1]LIU Z Y,ZHOU J.Introduction to Graph Neural Networks[M].Morgan & Claypool,2020:1-3. [2]HENAFF M,BRUNA J,LECUN Y.DeepConvolutional Net-works on Graph-structured Data[J].arXiv:1506.05163,2015. [3]BASTINGS J,TITOV I,AZIZ W,et al.GraphConvolutional Encoders for Syntax-aware Neural Machine Translation[C]//Proceedings of the 2017 Conference on EmpiricalMethods in Natural Language Processing.Copenhagen,Denmark,2017:1957-1967. [4]RHEE S,SEO S,KIM S.Hybrid Approach of Relation Networkand Localized Graph Convolutional Filtering for Breast Cancer Subtype Classification[J].arXiv:1711.05859,2017. [5]ZHANG Y H,QI P,MANNING C D.Graph Convolution over Pruned Dependency Trees Improves Relation Extraction[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.Brussels,Belgium,2018:2205-2215. [6]GORI M,MONFARDINI G,SCARSELLI F.A New Model for Learning in Graph Domains[C]// IEEE International Joint Conference on Neural Networks.2005:729-734. [7]SCARSELLI F,GORI M,TSOI A C,et al.The Graph NeuralNetwork Model[J].IEEE Transactions on Neural Networks,2009,20(1):61-80. [8]BRUNA J,ZAREMBA W,SZLAM A,et al.Spectral Networks and Locally Connected Networks on Graphs[C]//International Conference on Learning Representations (ICLR).2014. [9]HAMMOND D K,VANDERGHEYNST P,GRIBONAL R.Wavelets on Graphs via Spectral Graph Theory[J].Applied and Computational Harmonic Analysis,2011,30(2):129-150. [10]KIPF T N,WELLING M.Semi-supervised Classification withGraph Convolutional Networks[C]//International Conference on Learning Representations (ICLR).2017. [11]LI R,WANG S,ZHU F,et al.Adaptive Graph Convolutional Neural Networks[C]//Proc.of AAAI.2018:3546-3553. [12]NIEPERT M,AHMED M,KUTZKOV K.Learning Convolutional Neural Networks for Graphs[C]//Proc.of ICML.2016:2014-2023. [13]HAMILTON W,YINGR,LESKOVEC J.Inductive Representation Learning on Large Graphs[C]//Advances inNeural Information Processing Systems.Long Beach,US,2017:1024-1034. [14]ATWOOD J,TOWSLEY D.Diffusion-convolutional NeuralNetworks[C]//Proc.of NIPS.2016:1993-2001. [15]ZHUANG C,MA Q.Dual Graph Convolutional Networks for Graph-based Semi-supervised Classification[C]//Proc.of WWW.2018:499-508. [16]LUO Z G,JIANG X Z,DING F,et al.New Development ofCommunity Discovery Algorithm in complexnetworks[J].Journal of Defense Science and Technology University,2011,3(1):47-52. [17]LIU D Y,JIN D,HE D X,et al.Survey of Community Mining in Complex Networks[J].Computer Research and Development,2013,50(10):2140-2154. [18]CHENG X Q,SHEN H W.Community Structure of Complex Network [J].Complex System and Complexity Science,2011,8(1):57-70. [19]GRIVAN M,NEWMAN M E J.Community Structure in Social and Biological Networks[J].Proc Natl Acad Sci USA,2002,99(12):7821-7826. [20]ZHAO W J,ZHANG F B,LIU J L.Research Progress of Community Discovery in Complex Networks[J].Computer Science,2020,47(2):10-20. [21]LIU F Z,XUE S,WU J,et al.Deep Learning for Community Detection:Progress,Challenges and Opportunities[C]//International Joint Conference on Artificial Intelligence.2020:4981-4987. [22]XIN X,WANG C K,YING X,et al.Deep Community Detection in Topologically Incomplete Networks[J].Physica A:Statistical Mechanics and its Applocation,2017,469:342-352. [23]CAO J X,JIN D,YANG L,et al.Incorporating Network Structure with Node Contents for Community Detection on Large Networks using Deep Learning[J].Neurocomputing,2018,297:71-81. [24]CAO J,JIN D,DANG J W.Autoencoder Based Community Detection with Adaptive Integration of Network Topology and Node Contents[C]//KSEM.2018:184-196. [25]XU K,HU W H,LESJOVEC J,et al.How Powerful are Graph Neural Networks[C]//ICLR 2019.2019:1-17. [26]BRUNA J,XIANG L.Community Detection with Graph Neural Networks[J].arXiv:1705.08415,2017. [27]PETER V,BANDYOPADHYAY S.Self-Expressive GraphNeural Network for Unsupervised Community Detection[J].arXiv:2011.14078,2020. [28]ZHANG H,ACHARYA D B.Community Detection Clustering via Gumbel Softmax[J].SN Computer Science,2020,1(5):1-11. [29]ACHARYA D B,ZHANG H.Feature Selection and Extraction for Graph Neural Networks[C]//Proceedings of the 2020 ACM Southeast Conference.2020:252-255. [30]YANG L,CAO X,HE D,et al.Modularity Based CommunityDetection with Deep Learning[C]//International Joint Confe-rence on Artificial Intelligence.AAAI Press,2016:2252-2258. [31]CHOONG J J,LIU X,MURATA T.Optimizing VariationalGraph Autoencoder for Community Detection[C]//2019 IEEE International Conference on Big Data (Big Data).IEEE,2019:5353-5358. [32]SUN J,ZHENG W,ZHANG Q,et al.Graph Neural NetworkEncoding for Community Detection in Attribute Networks[C]//IEEE Transactions on Cybernetics.2020:1-14. [33]CHEN Z D,LI L S,BRUNA J.Supervised Community Detection with Line Graph Neural Networks[C]//ICLR.2019. [34]ZHENG Y P,CHEN S Y,ZHANG X N,et al.Heterogeneous-Temporal Graph Convolutional Networks:Make the Community Detection Much Better[J]arXiv:1909.10248,2019. [35]LU N N,LUO W J,NI L,et al.Extending CDFR for Overlapping Community Detection[C]//Proceedings of the 1st International conference on Data Intelligence and Security.2018:200-206. [36]LUO W,YAN Z,BU C,et al.Community Detection by Fuzzy Relations[J].IEEE Transactions on Emerging Topics in Computing,2017,1(9):125-134. [37]SHCHUR O,GUNNEMANN S.Overlapping Community De-tection with Graph Neural Networks[C]//KDD Workshop DLG'19.2019. [38]TODESCHINI A,MISCOURIDOU X,CARON F.Exchangeable Random Measures for Sparse and Modular Graphs with Overlapping Communities[J].arXiv:1602.02114. [39]YANG J,LESKOVEC J.Overlapping Community Detection at Scale:A Nonnegative Matrix Factorization Approach[C]//Proceedings of the Sixth ACM International Conference on Web Search and Data Mining.2013. [40]ZHOU M.Infinite Edge Partition Models for Overlapping Community Detection and Link Prediction[C]//2014 International Conference on Artificial Intelligence and Statistics.2014:1135-1143. [41]YU Q C,YU Z W,WANG Z,et al.Estimating Posterior Inference Quality of the Relational InfiniteLatent Feature Model for Overlapping Community Detection[J].Frontiers of Computer Science,2020,14(6):1-15. [42]KOVACS I A,PALOTAI R,SZALAY M S,et al.Community Landscapes:An Integrative Approach to Determine Overlapping Network Module Hierarchy,Identify Key Nodes and Predict Network Dynamics[J].Plos One,2010,5(9):e12528. [43]JIN D,LIU Z,LI W,et al.Graph Convolutional Networks Meet Markov Random Fields:Semi-Supervised Community Detection in Attribute Networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:152-159. [44]LIU D Y,JIN D,HE D X,et al.Survey of Community Mining in Complex Networks[J].Computer Research and Development,2013,50(10):2140-2154. |
[1] | 董晓梅, 王蕊, 邹欣开. 面向推荐应用的差分隐私方案综述[J]. 计算机科学, 2021, 48(9): 21-35. |
[2] | 周新民, 胡宜桂, 刘文洁, 孙荣俊. 基于多模态多层级数据融合方法的城市功能识别研究[J]. 计算机科学, 2021, 48(9): 50-58. |
[3] | 钱梦薇, 过弋. 融合偏置深度学习的距离分解Top-N推荐算法[J]. 计算机科学, 2021, 48(9): 103-109. |
[4] | 徐涛, 田崇阳, 刘才华. 基于深度学习的人群异常行为检测综述[J]. 计算机科学, 2021, 48(9): 125-134. |
[5] | 张新峰, 宋博. 一种基于改进三元组损失和特征融合的行人重识别方法[J]. 计算机科学, 2021, 48(9): 146-152. |
[6] | 林椹尠, 张梦凯, 吴成茂, 郑兴宁. 利用生成对抗网络的人脸图像分步补全法[J]. 计算机科学, 2021, 48(9): 174-180. |
[7] | 黄晓生, 徐静. 基于PCANet的非下采样剪切波域多聚焦图像融合[J]. 计算机科学, 2021, 48(9): 181-186. |
[8] | 田野, 陈宏巍, 王法胜, 陈兴文. 室内移动机器人的SLAM算法综述[J]. 计算机科学, 2021, 48(9): 223-234. |
[9] | 陈湘涛, 赵美杰, 杨梅. 基于子图结构的局部社区发现算法[J]. 计算机科学, 2021, 48(9): 244-250. |
[10] | 谢良旭, 李峰, 谢建平, 许晓军. 基于融合神经网络模型的药物分子性质预测[J]. 计算机科学, 2021, 48(9): 251-256. |
[11] | 冯霞, 胡志毅, 刘才华. 跨模态检索研究进展综述[J]. 计算机科学, 2021, 48(8): 13-23. |
[12] | 王立梅, 朱旭光, 汪德嘉, 张勇, 邢春晓. 基于深度学习的民事案件判决结果分类方法研究[J]. 计算机科学, 2021, 48(8): 80-85. |
[13] | 郭琳, 李晨, 陈晨, 赵睿, 范仕霖, 徐星雨. 基于通道注意递归残差网络的图像超分辨率重建[J]. 计算机科学, 2021, 48(8): 139-144. |
[14] | 刘帅, 芮挺, 胡育成, 杨成松, 王东. 基于深度学习SuperGlue算法的单目视觉里程计[J]. 计算机科学, 2021, 48(8): 157-161. |
[15] | 王施云, 杨帆. 基于U-Net特征融合优化策略的遥感影像语义分割方法[J]. 计算机科学, 2021, 48(8): 162-168. |
|