计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 452-455.doi: 10.11896/jsjkx.210900131

• 网络& 通信 • 上一篇    下一篇

基于粒子群优化算法的无线传感网络安全分簇策略

蒋建峰1,2, 孙金霞1, 尤澜涛3   

  1. 1 苏州工业园区服务外包职业学院 江苏 苏州215123
    2 南京邮电大学计算机学院 南京210000
    3 苏州大学计算机科学与技术学院 江苏 苏州215123
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 蒋建峰(jiangjf@siso.edu.cn)
  • 基金资助:
    国家自然科学基金(61702351);江苏省博士后研究基金(2018K009B);江苏省专业带头人高端研修项目成果之一(2020GRFX074);江苏省青蓝工程项目成果(202010)

Security Clustering Strategy Based on Particle Swarm Optimization Algorithm in Wireless Sensor Network

JIANG Jian-feng1,2, SUN Jin-xia2, YOU Lan-tao3   

  1. 1 Suzhou Industrial Park Institute of Services Outsourcing,Suzhou,Jiangsu 215123,China
    2 School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210000,China
    3 School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215123,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:JIANG Jian-feng,born in 1983,master,associate professor.His main research interests include network technology,Internet of things,virtualization and cloud computing technology.
  • Supported by:
    National Natural Science Foundation of China(61702351),Postdoctoral Research Fund of Jiangsu Province(2018K009B),High-end Training for Professional Leaders in Jiangsu Province(2020GRFX074) and Qinglan Engineering Project in Jiangsu Province(202010).

摘要: 为解决无线传感网络存在的网络生存时间短及缺乏有效的安全传输机制问题,提出了一种基于粒子群优化算法的无线传感网络安全分簇策略。该策略结合多项式混合密钥分配技术加密簇内和簇间节点的通信数据,保证了数据传输的安全性能;另一方面,通过优化的粒子群算法构造基于节点剩余能量和通信距离的适值函数来选择最优簇首和分簇数量,通过比较粒子聚合度值迭代计算求解,解决加密算法导致的微弱能量损耗问题,保证传感器网络性能的同时实现数据通信安全。网络仿真测试表明,该策略在确保传感网络安全的同时,能够将网络吞吐量提高120%,将传感网络生命周期延长30%~65%,更好地实现了传感网络性能的优化。

关键词: 无线传感网, 粒子群, 多项式密钥, 网络安全

Abstract: In order to solve the problem of short network survival time and lack of effective secure transmission mechanism in wireless sensor networks,a secure clustering strategy for wireless sensor networks based on particle swarm optimization algorithm(SC_PSO) is proposed.This strategy combines the polynomial hybrid key distribution technology to encrypt the communication data of nodes between clusters,which ensures the security performance of data transmission.On the other hand,an optimized particle swarm algorithm is used to construct a fitness function based on the remaining energy of the node and the communication distance to select the optimal cluster head and the number of clusters.It can solve the problem of energy loss caused by the encryption algorithm,and it can ensure the performance of the sensor network while realizing data security communication.The network simulation test shows that this strategy can increase the network throughput by 120% and extend the life cycle of the sensor network by 30%~65% while ensuring the security of the sensor network.

Key words: Wireless Sensor Network, PSO, Polynomial Key, Network Security

中图分类号: 

  • TP393
[1]LIU F,WANG D D,YU B.Instant messaging system based on 3DES-RC4 hybrid encryption[J].Computer System Application,2020,29(8):80-89.
[2]MAO K J,SUN J S,YAN S H.Research on a WSNs Hierarchical Routing Protocol with Balanced Energy Consumption[J].Transducer and Microsystems Technologies,2020,39 (1):24-27,31.
[3]YANG J,LIU X L,XU Q.A new clustering routing protocol for heterogeneous wireless sensor networks[J].Transducer and Microsystems Technologies,2020,39(4):121-124,128.
[4]CUI Y N,WEI W,HU Y H.Improved LEACH routing based on particle swarm optimization algorithm in WSN[J].Journal of China Academy of Electronics,2019,14(11):1169-1173,1193.
[5]WANG X P,WU L B,MIAO F Y.Research on Multi-polynomial Key Distribution Scheme for Wireless Sensor Network[J].Journal of Chinese Computer Systems,2018,39(2):193-196.
[6]WEI Q F,YUAN Y Y,HU X D.WSN security model based on the hierarchical security role of backbone nodes[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science),2019,31(5):142-148.
[7]YUAN Y Y.Research on hierarchical security model of wireless
sensor network based on backbone trusted nodes[D].Chongqing:Chongqing University of Posts and Telecommunications,2018.
[8]JI A G,ZHAO J X.The improvement and simulation forLEACH clustering routing protocol[C]//Seventh International Conference on Electronics & Information Engineering.2017.
[9]QI H,LV L,CHEN H.LEACH optimization algorithm based on power control and number of clusters[J].Transducer and Microsystems Technologies,2018,37(10):137-139,146.
[10]FENG J,KONG J S,WANG G.A clustering single-hop routing protocol for wireless sensor networks based on energy replenishment[J].Computer Science,2020,47(S1):278-282.
[11]TAO Z Y,WANG H Z.Non-uniform hierarchical routing protocol for wireless sensor networks based on new clustering[J].Computer Science,2018,45(3):115-123.
[12]XIONG C B,DING H W,DONG Z F.A low-latency and low-power WSN clustering algorithm based on LEACH[J].ComputerScience,2020,47(1):258-264.
[13]SONG W W.Load balancing mechanism of data center based on particle swarm optimization[J].Nanjing University of Posts and Telecommunications(Natural Science),2019,39(5):81-88.
[14]YI M.A secure clustering algorithm for wireless sensor networks based on hybrid PSO[J].Journal of PLA University of Science and Technology (Natural Science Edition),2015(16):433-438.
[15]MA S Q,TANG H,LI Y.Data center network traffic scheduling strategy based on particle swarm optimization algorithm[J].Telecommunication Engineering,2021,61(7):865-871.
[1] 张师鹏, 李永忠. 基于降噪自编码器和三支决策的入侵检测方法[J]. 计算机科学, 2021, 48(9): 345-351.
[2] 屈立成, 吕娇, 屈艺华, 王海飞. 基于模糊神经网络的运动目标智能分配定位算法[J]. 计算机科学, 2021, 48(8): 246-252.
[3] 周仕承, 刘京菊, 钟晓峰, 卢灿举. 基于深度强化学习的智能化渗透测试路径发现[J]. 计算机科学, 2021, 48(7): 40-46.
[4] 李贝贝, 宋佳芮, 杜卿芸, 何俊江. DRL-IDS:基于深度强化学习的工业物联网入侵检测系统[J]. 计算机科学, 2021, 48(7): 47-54.
[5] 孙振强, 罗永龙, 郑孝遥, 章海燕. 一种融合用户情感与相似度的智能旅游路径推荐方法[J]. 计算机科学, 2021, 48(6A): 226-230.
[6] 陈海彪, 黄声勇, 蔡洁锐. 一个基于智能电网的跨层路由的信任评估协议[J]. 计算机科学, 2021, 48(6A): 491-497.
[7] 王金恒, 单志龙, 谭汉松, 王煜林. 基于遗传优化PNN神经网络的网络安全态势评估[J]. 计算机科学, 2021, 48(6): 338-342.
[8] 刘炜, 李东坤, 徐畅, 田钊, 佘维. 应急通信网络中基于粒子群优化的信道分配算法[J]. 计算机科学, 2021, 48(5): 277-282.
[9] 张凯, 刘京菊. 基于吸收Markov链的网络入侵路径分析方法[J]. 计算机科学, 2021, 48(5): 294-300.
[10] 郭蕊, 芦天亮, 杜彦辉. WSN中基于目标决策的源位置隐私保护方案[J]. 计算机科学, 2021, 48(5): 334-340.
[11] 陈明豪, 祝跃飞, 芦斌, 翟懿, 李玎. 基于Attention-CNN的加密流量应用类型识别[J]. 计算机科学, 2021, 48(4): 325-332.
[12] 刘全明, 李尹楠, 郭婷, 李岩纬. 基于Borderline-SMOTE和双Attention的入侵检测方法[J]. 计算机科学, 2021, 48(3): 327-332.
[13] 姚泽玮, 林嘉雯, 胡俊钦, 陈星. 基于PSO-GA的多边缘负载均衡方法[J]. 计算机科学, 2021, 48(11A): 456-463.
[14] 王宇晨, 齐文慧, 徐立臻. 基于区块链的无人机集群安全协作[J]. 计算机科学, 2021, 48(11A): 528-532.
[15] 马琳, 王云霄, 赵丽娜, 韩兴旺, 倪金超, 张婕. 基于多模型判别的网络入侵检测系统[J]. 计算机科学, 2021, 48(11A): 592-596.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 冯芙蓉, 张兆功. 目标轮廓检测技术新进展[J]. 计算机科学, 2021, 48(6A): 1 -9 .
[2] 孙正, 张小雪. 生物光声成像中声反射伪影抑制方法的研究进展[J]. 计算机科学, 2021, 48(6A): 10 -14 .
[3] 周欣, 刘硕迪, 潘薇, 陈媛媛. 自然交通场景中的车辆颜色识别[J]. 计算机科学, 2021, 48(6A): 15 -20 .
[4] 黄雪冰, 魏佳艺, 沈文宇, 凌力. 基于自适应加权重复值滤波和同态滤波的MR图像增强[J]. 计算机科学, 2021, 48(6A): 21 -27 .
[5] 江妍, 马瑜, 梁远哲, 王原, 李光昊, 马鼎. 基于分数阶麻雀搜索优化OTSU肺组织分割算法[J]. 计算机科学, 2021, 48(6A): 28 -32 .
[6] 冯霞, 胡志毅, 刘才华. 跨模态检索研究进展综述[J]. 计算机科学, 2021, 48(8): 13 -23 .
[7] 周文辉, 石敏, 朱登明, 周军. 基于残差注意力网络的地震数据超分辨率方法[J]. 计算机科学, 2021, 48(8): 24 -31 .
[8] 朝乐门, 尹显龙. 人工智能治理理论及系统的现状与趋势[J]. 计算机科学, 2021, 48(9): 1 -8 .
[9] 雷羽潇, 段玉聪. 面向跨模态隐私保护的AI治理法律技术化框架[J]. 计算机科学, 2021, 48(9): 9 -20 .
[10] 王俊, 王修来, 庞威, 赵鸿飞. 面向科技前瞻预测的大数据治理研究[J]. 计算机科学, 2021, 48(9): 36 -42 .