计算机科学 ›› 2023, Vol. 50 ›› Issue (5): 72-81.doi: 10.11896/jsjkx.220200110

• 可解释性人工智能 • 上一篇    下一篇

基于灰狼算术混合优化算法的类集成测试序列生成方法

张文宁1,2,3, 周清雷4, 焦重阳1,2, 徐婷1,2,4   

  1. 1 中国人民解放军战略支援部队解放军信息工程大学 郑州 450000
    2 数学工程与先进计算国家重点实验室 郑州 450000
    3 中原工学院软件学院 郑州 450000
    4 郑州大学信息工程学院 郑州 450000
  • 收稿日期:2022-02-17 修回日期:2022-09-11 出版日期:2023-05-15 发布日期:2023-05-06
  • 通讯作者: 周清雷(ieqlzhou@zzu.edu.cn)
  • 作者简介:(zhangwn@zut.edu.cn)
  • 基金资助:
    国家重点研发计划(2018********01);河南省科技攻关计划(172102210592,212102210417)

Hybrid Algorithm of Grey Wolf Optimizer and Arithmetic Optimization Algorithm for Class Integration Test Order Generation

ZHANG Wenning1,2,3, ZHOU Qinglei4, JIAO Chongyang1,2, XU Ting1,2,4   

  1. 1 PLA Strategic Support Force Information Engineering University,Zhengzhou 450000,China
    2 State Key Laboratory of Mathematical Engineering and Advanced Computing,Zhengzhou 450000,China
    3 Software College,Zhongyuan University of Technology,Zhengzhou 450000,China
    4 School of Information Engineering,Zhengzhou University,Zhengzhou 450000,China
  • Received:2022-02-17 Revised:2022-09-11 Online:2023-05-15 Published:2023-05-06
  • About author:ZHANG Wenning,born in 1982,Ph.D candidate,is a member of China Computer Federation.Her main research interests include intelligent computing and software engineering.
    ZHOU Qinglei,born in 1962,Ph.D,professor,Ph.D supervisor,is a member of China Computer Federation.His main research interests include information security and software engineering.
  • Supported by:
    National Key R&D Program of China(2018********01) and Science and Technology Project in Henan Province(172102210592,212102210417).

摘要: 集成测试是软件测试的重要环节,如何决定类的集成顺序是面向对象集成测试难解决的问题之一。已有研究成果证实了基于搜索的类集成测试序列生成方法的有效性,但存在收敛速度慢、寻优精度低的问题。灰狼优化算法(Grey Wolf Optimizer,GWO) 中狼群易聚集在相近的区域,易早熟收敛。算术优化算法(Arithmetic Optimization Algorithm,AOA)是新近提出的元启发式优化算法,具有良好的随机性及分散性。为此,提出了一种灰狼优化算法和算术优化算法的混合优化算法(GWO-AOA)。GWO-AOA保留GWO的位置更新策略,选用群体领导层的中心个体替换AOA的引导个体,以平衡算法的全局探索和局部开发能力,进一步引入随机游动的精英变异机制,提高算法整体的寻优精度。实验结果表明,GWO-AOA相比同类方法能用较短的时间生成测试桩代价较低的类集成测试序列,收敛速度较快。

关键词: 集成测试, 类集成测试序列, 灰狼优化算法, 算术优化算法, 混合优化, 随机游动

Abstract: Integration testing is an essential and important part in software testing.Determining the orders in which classes should be tested during the object oriented integration testing is a very complex problem.The search based approaches have been proved to be efficient in generating class integration test orders(CITO),with the disadvantage of slow convergence speed and low optimization accuracy.In the grey wolf optimizer(GWO) algorithm,wolves are likely to be located in the same or certain regions,thus easily being trapped into local optima.Arithmetic optimization algorithm(AOA) is a new meta heuristic technique with excellent randomness and dispersibility.To improve the performance of CITO generation,a hybrid optimization algorithm of GWO and AOA(GWO-AOA) is proposed,combining the rapid convergence speed of GWO and strong ability to avert local optima stagnation of AOA.In the GWO-AOA,the main hunting steps of GWO is unchanged and the leading individual of AOA is replaced by the center of dominant wolfs,providing a proper balance between exploration and exploitation.In addition,random walk scheme is adopted based on the random local mutation to improve the global search ability.Experimental results indicate that the proposed method can generate promising class integration test orders with less time compared to other comparative methods.

Key words: Integration testing, Class integration test order, Grey wolf optimizer, Arithmetic optimization algorithm, Hybrid optimization, Random walk

中图分类号: 

  • TP311.5
[1]HANH V L,AKIF K,TRAON Y L,et al.Selecting an Efficient OO Integration Testing Strategy:An Experimental Comparison of Actual Strategies[C]//Proceedings of the 15th European Conference on Object-Oriented Programming.Budapest,Hungary,2001:381-401.
[2]JIANG S J,ZHANG M,ZHANG Y M,et al.An IntegrationTest Order Strategy to Consider Control Coupling[J].IEEE Transaction on Software Engineering,2021,47(7):1350-1367.
[3]CZIBULA G,CZIBULA I G,MARIAN Z.An Effective Ap-proach for Determining the Class Integration Test Order Using Reinforcement Learning[J].Applied Soft Computing,2018,65(C):517-530.
[4]ZHANG M,KEUNG J W,CHEN T Y,et al.Validating Class Integration Test Order Generation Systems with Metamorphic Testing[J].Information and Software Technology,2021,132:1-13.
[5]KUNG D,GAO J,HSIA P,et al.A Test Strategy for ObjectOriented Programs[C]//Proceedings of the 19th Annual International Computer Software and Applications Conference.Wa-shington:IEEE Computer Society,1995:239-244.
[6]KHARI M,SINHA A,VERDU E,et al.Performance Analysis of Six Meta-heuristic Algorithms over Automated Test Suite Generation for Path Coverage based Optimization[J].Soft Computing,2020,24(12):9143-9160.
[7]MIRJALILI S,MIRJALILI S M,LEWIS A.Grey Wolf Optimizer[J].Advances in Engineering Software,2014,69(3):46-61.
[8]ABUALIGAH L,DIABAT A,MIRJALILI S,et al.The Arith-metic Optimization Algorithm[J].Computer Methods in Applied Mechanics and Engineering,2021,376:1-39.
[9]TAI K C,DANIELS F J.Test Order for Interclass Object-Orien-ted Software[C]//Proceedings of the 21stInternational Compu-ter Software and Applications Conference.Washington:IEEE Computer Society,1997:602-607.
[10]LE T Y,JERON T,JEZEQUEL M,et al.Efficient ObjectOriented Integration and Regression Test[J].IEEE Transactions on Reliability,2000,49(1):12-25.
[11]BRIAND L C,LABICHE Y,WANF Y.An Investigation ofGraph-Based Class Integration Test Order Strategies[J].IEEE Transactions on Software Engineering,2003,29(7):594-607.
[12]LU Y S,MAO C Y.Method of Inter Class Test Order Determination for Object Oriented Cluster Level Testing[J].Journal of Mini-Micro ComputerSystems,2005,26(6):995-999.
[13]ZHANG M,KEUNG J,XIAO Y,et al.A Heuristic Approach to Break Cycles for the Class Integration Test Order Generation[C]//IEEE 43rd Annual Computer Software and Applications Conference.Washington:IEEE Computer Society,2019:47-52.
[14]ZHANG Y M,JIANG S J,ZHANG H C.An Approach forClass Integration Testing based on Dynamic Dependency Relations[J].Chinese Journal of Computers,2011,34(6):1075-1089.
[15]JIANG S J,ZHANG Y M,WANG Q T,et al.Design of Class Integration Test Order Based on Coupling Measures[J].International Journal on Information,2012,15(1):331-338.
[16]BRIAND L C,FENG J,LABICHE Y.Experiment with Genetic Algorithms and Coupling Measures to Devise Optimal Integration Test Orders[C]//Proceedings of the 14th International Conference on Software Engineering and Knowledge Enginee-ring.New York:ACM,2002:43-50.
[17]BORNER L,PAECH B.Integration Test Order Strategies toConsider Test Focus and Simulation Effort[C]//Proceedings of the International Conference on Advances in System Testing and Validation Lifecycle.Washington:IEEE Computer Society,2009:80-85.
[18]CZIBULA I G,CZIBULA G,MARIAN Z.Identifying Class Integration Test Order Using an Improved Genetic Algorithm based Approach[C]//Proceedings of International Conference on Software Technologies.Berlin:Springer Verlag,2018:163-187.
[19]ZHANG Y M,JIANG S J,CHEN R Y,et al.Class Integration Testing Order Determination Method based on Particle Swarm Optimization Algorithm[J].Chinese Journal of Computers,2018,41(4):931-945.
[20]ZHANG Y N,JIANG S J,ZHANG Y M.Approach for Generating Class Integration Test Sequence based on Dream Particle Swarm Optimization Algorithm[J].Computer Science,2019,46(2):159-165.
[21]CABRAL R,POZO A,VERGILIO S R.A Pareto Ant Colony Algorithm Applied to the Class Integration and Test Order Problem[C]//Proceedings of the 22nd IFIP International Conference on Testing Software and Systems.Berlin:Springer Verlag,2010:16-29.
[22]VERGILIO S R,POZO A,GARCIA J C,et al.Multi-objectiveOptimization Algorithms Applied to the Class Integration and Test Order Problem[J].International Journal on Software Tools for Technology Transfer,2012,14(4):461-475.
[23]WANG Y,YU H,ZHU Z L.A Class Integration Test OrderMethod based on the Node Importance of Software[J].Journal of Computer Research and Development,2016,53(3):517-530.
[24]ZHANG M,KEUNG J W,XIAO Y,et al.Evaluating the Effects of Similar Class Combination on Class Integration Test Order Generation[J].Information and Software Technology,2021,129:1-16.
[25]MARIANI T,GUIZZO G,VERGILIO S R,et al.Grammatical Evolution for the Multi-Objective Integration and Test Order Problem[C]//Proceedings of the Genetic and Evolutionary Computation Conference.New York:ACM,2016:1069-1076.
[26]FEI K X,WANG Y W,GONG Y Z.An Integrated Test Sequence Generation Method Based on Software Metrics[J].Journal of Zhengzhou University(Engineering Science),2021,42(4):1-6.
[27]HEWETT R,KIJSANAYOTHIN P.Automated Test OrderGeneration for Software Component Integration Testing[C]//Proceedings of IEEE/ACM International Conference on Automated Software Engineering.Washington:IEEE Computer So-ciety,2009:211-220.
[28]WANG Z S,LI B X.Using Coupling Measure Technique and Random Iterative Algorithm for Inter-class Integration Test Order Problem[C]//Proceedings of the 34th Annual IEEE Computer Software and Applications Conference.Washington:IEEE Computer Society,2010:329-334.
[1] 储安琪, 丁志军.
基于灰狼优化算法的信用评估样本均衡化与特征选择同步处理
Application of Gray Wolf Optimization Algorithm on Synchronous Processing of Sample Equalization and Feature Selection in Credit Evaluation
计算机科学, 2022, 49(4): 134-139. https://doi.org/10.11896/jsjkx.210300075
[2] 卢纯义, 于津, 余忠东, 丁双松, 张占龙, 裘科成.
基于改进灰狼算法优化SVR的混凝土中钢筋直径检测方法
Detection Method of Rebar in Concrete Diameter Based on Improved Grey Wolf Optimizer-based SVR
计算机科学, 2022, 49(11): 228-233. https://doi.org/10.11896/jsjkx.210800039
[3] 张冰清, 费琪, 王轶辰, 杨召.
面向SOA的集成测试序列生成算法研究
Study on Integration Test Order Generation Algorithm for SOA
计算机科学, 2022, 49(11): 24-29. https://doi.org/10.11896/jsjkx.210400210
[4] 李阳, 李维刚, 赵云涛, 刘翱.
基于莱维飞行和随机游动策略的灰狼算法
Grey Wolf Algorithm Based on Levy Flight and Random Walk Strategy
计算机科学, 2020, 47(8): 291-296. https://doi.org/10.11896/jsjkx.190600107
[5] 武玉坤,肖杰,李伟,楼吉林.
融合渐近性的灰狼优化支持向量机模型
Support Vector Machine Model Based on Grey Wolf Optimization Fused Asymptotic
计算机科学, 2020, 47(2): 37-43. https://doi.org/10.11896/jsjkx.190100092
[6] 孙博文, 韦素媛.
基于自适应调整策略灰狼算法的DV-Hop定位算法
DV-Hop Localization Algorithm Based on Grey Wolf Optimization Algorithm with
Adaptive Adjutment Strategy
计算机科学, 2019, 46(5): 77-82. https://doi.org/10.11896/j.issn.1002-137X.2019.05.012
[7] 张晓凤,王秀英.
灰狼优化算法研究综述
Comprehensive Review of Grey Wolf Optimization Algorithm
计算机科学, 2019, 46(3): 30-38. https://doi.org/10.11896/j.issn.1002-137X.2019.03.004
[8] 张悦宁, 姜淑娟, 张艳梅.
基于梦境粒子群优化的类集成测试序列生成方法
Approach for Generating Class Integration Test Sequence Based on Dream Particle Swarm Optimization Algorithm
计算机科学, 2019, 46(2): 159-165. https://doi.org/10.11896/j.issn.1002-137X.2019.02.025
[9] 张新明,涂强,康强,程金凤.
灰狼优化与差分进化的混合算法及函数优化
Hybrid Optimization Algorithm Based on Grey Wolf Optimization and Differential Evolution for Function Optimization
计算机科学, 2017, 44(9): 93-98. https://doi.org/10.11896/j.issn.1002-137X.2017.09.019
[10] 魏政磊,赵辉,韩邦杰,孙楚,李牧东.
具有自适应搜索策略的灰狼优化算法
Grey Wolf Optimization Algorithm with Self-adaptive Searching Strategy
计算机科学, 2017, 44(3): 259-263. https://doi.org/10.11896/j.issn.1002-137X.2017.03.053
[11] 张榜,王兴伟,黄敏.
蚊子产卵交配和模拟退火的混合优化数据副本放置机制
Hybrid Optimal Data Replica Placement Scheme Based on Mosquitoes Oviposition Mating and Simulated Annealing
计算机科学, 2015, 42(10): 57-59.
[12] .
一种基于运行时交互约束的COTS构件集成测试用例生成方法

计算机科学, 2009, 36(3): 261-265.
[13] .
构造基于构件依赖关系矩阵的元数据模型

计算机科学, 2008, 35(7): 269-273.
[14] 马良荔 郭福亮 李永杰.
基于变更模型的元数据在构件回归测试中的应用研究

计算机科学, 2008, 35(5): 280-283.
[15] .
基于复杂网络面向对象集成测试的研究

计算机科学, 2008, 35(12): 254-257.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!