计算机科学 ›› 2022, Vol. 49 ›› Issue (11): 228-233.doi: 10.11896/jsjkx.210800039

• 人工智能 • 上一篇    下一篇

基于改进灰狼算法优化SVR的混凝土中钢筋直径检测方法

卢纯义1, 于津1, 余忠东1, 丁双松1, 张占龙2, 裘科成2   

  1. 1 国网浙江省电力有限公司兰溪市供电公司 浙江 金华 321100
    2 重庆大学输配电装备及系统安全与新技术国家重点实验室 重庆 400044
  • 收稿日期:2021-08-04 修回日期:2021-10-23 出版日期:2022-11-15 发布日期:2022-11-03
  • 通讯作者: 张占龙(zhangzl@cqu.edu.com)
  • 作者简介:(luchunyi@sohu.com)
  • 基金资助:
    国家自然科学基金(52077012)

Detection Method of Rebar in Concrete Diameter Based on Improved Grey Wolf Optimizer-based SVR

LU Chun-yi1, YU Jin1, YU Zhong-dong1, DING Shuang-song1, ZHANG Zhan-long2, QIU Ke-cheng2   

  1. 1 Lanxi Power Supply Company,State Grid Zhejiang Electric Power Co.,Ltd,Jinhua,Zhejiang 321100,China
    2 State Key Laboratory of Power Transmission Equipment & System Security and New Technology,Chongqing University,Chongqing 400044,China
  • Received:2021-08-04 Revised:2021-10-23 Online:2022-11-15 Published:2022-11-03
  • About author:LU Chun-yi,born in 1978,master,se-nior engineer.His main research inte-rests include electromagnetic measurement,electrical engineering and automation.
    ZHANG Zhan-long,born in 1971,professor,Ph.D supervisor.His main research interests include electromagnetic measurement and numerical analysis.
  • Supported by:
    National Natural Science Foundation of China(52077012).

摘要: 传统钢筋混凝土检测方法通过线性拟合或标准值查表法只能对钢筋直径做大致估算,无法精确测量。针对钢筋直径检测中样本数据较少、检测结果受到钢筋埋深及相邻钢筋间距的影响而非表现出非线性回归变化的情况,提出了基于改进灰狼算法(Improved Grey Wolf Optimizer,IGWO)优化的支持向量回归机(Support Vector Regression,SVR)检测方法(IGWO-SVR)。首先,通过反向学习策略优化初始化种群分布,改善了灰狼优化算法(Grey Wolf Optimizer,GWO)的全局搜索能力,通过随机差分变异策略扩大狼群动态搜索范围,避免了灰狼优化算法陷入局部最优;然后,将改进后的灰狼优化算法应用于支持向量回归机的核心参数寻优,以改良算法模型的检测性能;最后,与另外3种算法模型的实验结果进行对比分析,结果表明了所提方法在钢筋直径检测中的精度以及优化模型与实际值的拟合度都得到了有效提升。

关键词: 钢筋直径, 灰狼优化算法, 支持向量回归机, 反向学习策略, 随机差分变异策略

Abstract: The traditional reinforced concrete detection method uses linear fitting or standard value look-up table method,which can only roughly estimate the diameter of rebar.In view of the fact that there are few sample data of the diameter detection,and the detection result changes non-linearly due to the influences of the buried depth and the distance between adjacent rebars,a SVR detection method based on IGWO is proposed(IGWO-SVR).Firstly,the inverse learning strategy is used to optimize the initial population distribution,which improves the GWO global search ability.And he random differential mutation strategy is used to expand the search range,which can avoid the GWO algorithm from falling into the local optimum.Then,the IGWO algorithm is applied to the core parameter optimization of the SVR to improve the detection performance.Finally,the comparison and analysis of experimental results with the other three algorithm models show that the accuracy of the proposed method in the detection of rebar diameter has been effectively improved.

Key words: Rebar diameter, GWO, SVR, Reverse learning strategy, Random differential mutation strategy

中图分类号: 

  • TP301
[1]YE H,ZHANG Z,DAN Y,et al.Novel Method for Measurement of Rebar State of Cement Tower[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-8.
[2]XU C,ZHOU N,XIE J,et al.Investigation on Eddy CurrentPulsed Thermography to Detect Hidden Cracks On Corroded Metal Surface[J].NDT&E International,2016,84(12):27-35.
[3]KAUR P,DANA K J,ROMERO F A,et al.Automated GPR Rebar Analysis for Robotic Bridge Deck Evaluation[J].IEEE Transactions on Cybernetics,2016,46(10):2265-2276.
[4]LIAO Y,XIONG B,LI Q,et al.Study on Imaging Algorithm by Using Ultrasonic Array Probes for Concrete Structures[J].Piezoelectrics and Acoustooptics,2012,34(6):932-935.
[5]SUN Y,LI Q,HUANG L,et al.Application of Simulated Annealing Genetic Algorithm to CT Imaging of Concrete Structure[J].Piezoelectrics and Acoustooptics,2013,35(4):487-490.
[6]EDDY I C,UNDERHILL P R,MORELLI J,et al.Pulsed Eddy Current Response to Liftoff in Different Sizes of Concrete Embedded Rebar[C]//2019 IEEE SENSORS.Montreal,QC,Canada,2019:1-4.
[7]HE D F,TAUTSUMI N,TSUTSUMI N,et al.Corrosion Eva-luation of Steel Reinforcing Bar Using Electromagnetic Method[C]//2019 PhotonIcs & Electromagnetics Research Symposium-Spring(PIERS-Spring).Rome,Italy,2019:690-693.
[8]LU J J.Development of Rebar Detector Based on MagneticMeasurement[D].Harbin Institute of Technology,2017.
[9]LI T B,YIN Y H,LI C C,et al.Analysis of the detection algorithm for internal reinforcement of reinforced concrete based on soft sensing [J].Construction Technology,2019,48(6):88-92.
[10]NI G Z.Engineering electromagnetic field[M].Beijing:Higher Education Press,2009.
[11]LEI J S,CHEN J F.The regression prediction analysis of grouting concretion stone’s strength based on SVR [J].AdvancedMaterials Research,2013,859(10):171-176.
[12]LI S,FANG H,LIU X.Parameter optimization of support vector regression based on sine cosine algorithm [J].Expert System,2018,91(2):63-77.
[13]CAO Q K,ZHAO F.Forecast of water inrush quantity from coal floor based on genetic algorithm-support vector regression[J].Journal of China Coal Society,2011,36(12):2097-2101.
[14]LIU D W,XU Q,TANG Y,et al.Prediction of Water Inrush in Long-Lasting Shutdown Karst Tunnels Based on the HGWO-SVR Model [J] IEEE Access,2021,9:6368-6378.
[15]ZHOU P,GUO D W,WANG H,et al.Data-Driven RobustM-LS-SVR-Based NARX Modeling for Estimation and Control of Molten Iron Quality Indices in Blast Furnace Ironmaking[J].IEEE Transactions on Neural Networks and Learning Systems,2018,29(9):4007-4021.
[16]HATTA N M,ZAIN A M,SALLEHUDDIN R,et al.Recent studies on optimization method of Grey Wolf Optimizer(GWO):a review(2014-2017) [J].Artificial Intelligence Review,2018,18(2):1-33.
[17]MISHRA A K,DAS S R,RAY P K,et al.PSO-GWO Optimized Fractional Order PID Based Hybrid Shunt Active Power Filter for Power Quality Improvements[J].IEEE Access,2020,8:74497-74512.
[18]LI K,CHENG G Y,SUN X D,et al.A Nonlinear Flux Linkage Model for Bearingless Induction Motor Based on GWO-LSSVM [J] IEEE Access,2019,7:36558-36567.
[19]XU L W,WANG H,LIN W,et al.GWO-BP Neural Network Based OP Performance Prediction for Mobile Multiuser Communication Networks[J].IEEE Access,2019,7:152690-152700.
[20]TIZHOOSH H R.Opposition-based learning:a new scheme for machine intelligence[C]//International Conference on Computational Intelligence for Modelling,Control & Automation.IEEE,2005:695-701.
[1] 储安琪, 丁志军.
基于灰狼优化算法的信用评估样本均衡化与特征选择同步处理
Application of Gray Wolf Optimization Algorithm on Synchronous Processing of Sample Equalization and Feature Selection in Credit Evaluation
计算机科学, 2022, 49(4): 134-139. https://doi.org/10.11896/jsjkx.210300075
[2] 唐承娥, 韦军.
改进的支持向量回归机在电力负荷预测中的应用
Application of Power Load Prediction Based on Improved Support Vector Regression Machine
计算机科学, 2020, 47(6A): 58-65. https://doi.org/10.11896/JsJkx.191000042
[3] 武玉坤,肖杰,李伟,楼吉林.
融合渐近性的灰狼优化支持向量机模型
Support Vector Machine Model Based on Grey Wolf Optimization Fused Asymptotic
计算机科学, 2020, 47(2): 37-43. https://doi.org/10.11896/jsjkx.190100092
[4] 孙博文, 韦素媛.
基于自适应调整策略灰狼算法的DV-Hop定位算法
DV-Hop Localization Algorithm Based on Grey Wolf Optimization Algorithm with
Adaptive Adjutment Strategy
计算机科学, 2019, 46(5): 77-82. https://doi.org/10.11896/j.issn.1002-137X.2019.05.012
[5] 张晓凤,王秀英.
灰狼优化算法研究综述
Comprehensive Review of Grey Wolf Optimization Algorithm
计算机科学, 2019, 46(3): 30-38. https://doi.org/10.11896/j.issn.1002-137X.2019.03.004
[6] 付先凯, 蒋鑫龙, 刘军发, 张少博, 陈益强.
基于多维尺度分析的自适应室内群终端定位方法
Adaptive Indoor Location Method for Multiple Terminals Based on Multidimensional Scaling
计算机科学, 2018, 45(10): 104-110. https://doi.org/10.11896/j.issn.1002-137X.2018.10.020
[7] 张新明,涂强,康强,程金凤.
灰狼优化与差分进化的混合算法及函数优化
Hybrid Optimization Algorithm Based on Grey Wolf Optimization and Differential Evolution for Function Optimization
计算机科学, 2017, 44(9): 93-98. https://doi.org/10.11896/j.issn.1002-137X.2017.09.019
[8] 魏政磊,赵辉,韩邦杰,孙楚,李牧东.
具有自适应搜索策略的灰狼优化算法
Grey Wolf Optimization Algorithm with Self-adaptive Searching Strategy
计算机科学, 2017, 44(3): 259-263. https://doi.org/10.11896/j.issn.1002-137X.2017.03.053
[9] 王梅,王莎莎,孙莺萁,宋考平,田枫,廖士中.
SVRRPMCC:一种支持向量回归机的正则化路径近似算法
SVRRPMCC:A Regularization Path Approximation Algorithm of Support Vector Regression
计算机科学, 2017, 44(12): 42-47. https://doi.org/10.11896/j.issn.1002-137X.2017.12.008
[10] 郝运河,张浩峰.
基于双支持向量回归机的增量学习算法
Incremental Learning Algorithm Based on Twin Support Vector Regression
计算机科学, 2016, 43(2): 230-234. https://doi.org/10.11896/j.issn.1002-137X.2016.02.048
[11] 方益民,张玲,孙为民,徐保国.
求解非正定核Huber-SVR的SMO算法
SMO Algorithm for Resolving Huber-SVR with Non-positive Kernels
计算机科学, 2010, 37(7): 212-216.
[12] .
从近似超平面到SVR的算法研究

计算机科学, 2007, 34(5): 181-182.
[13] 周晓剑 朱嘉钢 王士同.
Huber-SVR中参数μ与输入噪声间的近似线性关系

计算机科学, 2007, 34(3): 154-158.
[14] .
r-SVR中参数r与输入噪声间线性反比关系的仿真研究

计算机科学, 2005, 32(9): 205-207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!