计算机科学 ›› 2023, Vol. 50 ›› Issue (5): 161-169.doi: 10.11896/jsjkx.220300110
胡绍凯1, 赫晓慧2, 田智慧2
HU Shaokai1, HE Xiaohui2, TIAN Zhihui2
摘要: 针对高分辨率遥感影像土地利用多分类结果中地块结构不完整、边界质量差的问题,提出了基于MLUM-Net模型的遥感影像土地利用多分类方法。该方法利用多尺度空洞卷积和通道注意力机制构造MDSPA编码器,提高了网络多尺度特征提取能力与地块位置定位的准确性,并通过空间注意力机制自适应增强了多尺度特征表达;为消除上采样语义损失和减少分类结果噪声,设计了混合池化上采样优化模块,用于优化分类结果并消除网络分类误差;根据土地利用多分类数据集类别占比不均衡的特点和地块结构的相似性指数设计混合损失函数,消除数据类别占比产生的影响,提高地块结构完整性和精细化分类边界。在多个数据集上进行了实验验证,总体精度和kappa指标均有明显提高,其分类结果结构完整且边缘划分准确,在土地利用多分类领域具有较好的实用价值。
中图分类号:
[1]SU M,GUO R Z,CHEN B,et al.Sampling Strategy for Detailed Urban Land Use Classification:A Systematic Analysis in Shen-zhen[J].Remote Sensing,2020,12(9):1497. [2]MEN J L,LIU Y Y,ZHANG B.High-scoring Image Land Use Classification Based on Feature Cascades of Multi-Structure Convolutional Neural Network[J].Geomatics and Information Science of Wuhan University,2019,44(12):1841-1848. [3]CHEN K Q,ZHU Z L,DENG X P,et al.Deep Learning forMulti-scale Object Detection:A Survey[J].Journal of Software,2021,32(4):1201-1227. [4]FENG F,LIU P X,LI L,et al.Study of FCM Fusing Improved Gravitational Search Algorithm in Medical Image Segmentation[J].Computer Science,2018,45(S1):252-254. [5]MARCOS D,VOLPI M,KELLENBERGER B,et al.Land covermapping at very high resolution with rotation equivariant CNNs Towards small yet accurate models[J].Isprs Journal of Photogrammetry & Remote Sensing,2018,145PA(NOV.):96-107. [6]MEMON N,PARIKH H,PATEL D,et al.Automatic LandCover Classification of Multi-Resolution Dualpol Data using Convolutional Neural Network(CNN)[J].Remote Sensing Applications Society and Environment,2021(2):100491. [7]XIA M,CAO G,WANG G Y,et al.Remote Sensing Image Classification Based on Deep Learning and Conditional Random Fields[J].Journal of Image and Graphics,2017,22(9):1289-1301. [8]YAO X,YANG H,WU Y,et al.Land Use Classification of the Deep Convolutional Neural Network Method Reducing the Loss of Spatial Features[J].Sensors,2019,19(12):2792-2807. [9]CHAI H B,YAN C,ZOU Y F,et al.Using PSP Net to Realize Land Cover Classification of Remote Sensing Imagery in Hubei Province[J].Geomatics and Information Science of Wuhan University,2021,46(8):1224-1232. [10]MENG Q X,DUAN X L.High-resolution Remote SensingImage Scene Classification Based on DCNN[J].Journal of Central China Normal University(Natural Sciences),2019,53(4):568-574. [11]ZHANG W,TANG P,ZHAO L.Fast and accurate land cover classification on medium resolution remote sensing images using segmentation models[J].International Journal of Remote Sen-sing,2021,42(9):3277-3301. [12]YANG M,YU K,CHI Z,et al.DenseASPP for semantic segmentation in street scenes[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2018:3684-3692. [13]HUANG G,LIU Z,LAURENS V D M,et al.Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2017:2261-2269. [14]AIHICHRE H,ALSUWAYED A,BAZI Y,et al.Classification of Remote Sensing Images using EfficientNet-B3 CNN Model with Attention[J].IEEE Access,2021,9(9):14078-14094. [15]RONNERBERGER O,FISCHERF P,BROX T.U-Net:Convolutional Networks for Biomedical Image Segmentation[J].Medical Image Computing and Computer Assisted Intervention,2015,28(4):234-241. [16]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal Loss for Dense Object Detection[C]//IEEE International Conference on Computer Vision(ICCV).2017:2999-3007. [17]WANG Z,BOVIK A C,SHEIKH H R,et al.Image Quality Assessment:From Error Visibility to Structural Similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612. [18]ROBINSON C,HOU L,MALKIN K,et al.Large Scale High-Resolution Land Cover Mapping with Multi-Resolution Data[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2019. [19]TONG X Y,XIA G S,LU Q,et al.Land-cover classificationwith high-resolution remote sensing images using transferable deep models[J].Remote Sensing of Environment,2020,237:111322. [20]CHAURASIA A,CULURCIELLO E.Exploiting encoder representations for efficient semantic segmentation[C]//2017 IEEE Visual Communications and Image Processing(VCIP).2017:1-4. [21]YANG M,YU K,ZHANG Z,et al.DenseASPP for Semantic Segmentation in Street Scenes[C]//2018 IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.2018:3684-3692. [22]CHEN L C,PAPANDREOU G,SCHROFFF,et al.Rethinking Atrous Convolution for Semantic Image Segmentation[C]//Computer Vision and Pattern Recognition.2017. |
[1] | 杨斌, 梁婧, 周佳薇, 赵梦赐. 基于注意力机制的可解释点击率预估模型研究 Study on Interpretable Click-Through Rate Prediction Based on Attention Mechanism 计算机科学, 2023, 50(5): 12-20. https://doi.org/10.11896/jsjkx.221000032 |
[2] | 李炳辉, 方欢, 梅振辉. 基于BERT和弱行为轮廓的可解释性事件日志修复方法 Interpretable Repair Method for Event Logs Based on BERT and Weak Behavioral Profiles 计算机科学, 2023, 50(5): 38-51. https://doi.org/10.11896/jsjkx.220900030 |
[3] | 王先旺, 周浩, 张明慧, 朱尤伟. 基于Swin Transformer和三维残差多层融合网络的高光谱图像分类 Hyperspectral Image Classification Based on Swin Transformer and 3D Residual Multilayer Fusion Network 计算机科学, 2023, 50(5): 155-160. https://doi.org/10.11896/jsjkx.220400035 |
[4] | 贾天豪, 彭力. 残差学习与循环注意力下的SSD目标检测算法 SSD Object Detection Algorithm with Residual Learning and Cyclic Attention 计算机科学, 2023, 50(5): 170-176. https://doi.org/10.11896/jsjkx.220400085 |
[5] | 阳影, 张凡, 李天瑞. 基于情感知识的双通道图卷积网络的方面级情感分析 Aspect-based Sentiment Analysis Based on Dual-channel Graph Convolutional Network with Sentiment Knowledge 计算机科学, 2023, 50(5): 230-237. https://doi.org/10.11896/jsjkx.220300008 |
[6] | 张雪, 赵晖. 基于多事件语义增强的情感分析 Sentiment Analysis Based on Multi-event Semantic Enhancement 计算机科学, 2023, 50(5): 238-247. https://doi.org/10.11896/jsjkx.220400256 |
[7] | 汪林, 蒙祖强, 杨丽娜. 基于多级多尺度特征提取的CNN-BiLSTM模型的中文情感分析 Chinese Sentiment Analysis Based on CNN-BiLSTM Model of Multi-level and Multi-scale Feature Extraction 计算机科学, 2023, 50(5): 248-254. https://doi.org/10.11896/jsjkx.220400069 |
[8] | 韩雪明, 贾彩燕, 李轩涯, 张鹏飞. 传播树结构结点及路径双注意力谣言检测模型 Dual-attention Network Model on Propagation Tree Structures for Rumor Detection 计算机科学, 2023, 50(4): 22-31. https://doi.org/10.11896/jsjkx.220200037 |
[9] | 尹恒, 张凡, 李天瑞. 基于多邻接图与多头注意力机制的短期交通流量预测 Short-time Traffic Flow Forecasting Based on Multi-adjacent Graph and Multi-head Attention Mechanism 计算机科学, 2023, 50(4): 40-46. https://doi.org/10.11896/jsjkx.220200079 |
[10] | 雒晓辉, 吴云, 王晨星, 余文婷. 基于用户长短期偏好的序列推荐模型 Sequential Recommendation Model Based on User’s Long and Short Term Preference 计算机科学, 2023, 50(4): 47-55. https://doi.org/10.11896/jsjkx.220100264 |
[11] | 王娅丽, 张凡, 余增, 李天瑞. 基于交互注意力和图卷积网络的方面级情感分析 Aspect-level Sentiment Classification Based on Interactive Attention and Graph Convolutional Network 计算机科学, 2023, 50(4): 196-203. https://doi.org/10.11896/jsjkx.220100105 |
[12] | 于兴崭, 芦天亮, 杜彦辉, 王曦锐, 杨成. 基于合成图像和Xception改进模型的安卓恶意家族分类方法 Android Malware Family Classification Method Based on Synthetic Image and Xception Improved Model 计算机科学, 2023, 50(4): 351-358. https://doi.org/10.11896/jsjkx.220300200 |
[13] | 李帅, 徐彬, 韩祎珂, 廖同鑫. SS-GCN:情感增强和句法增强的方面级情感分析模型 SS-GCN:Aspect-based Sentiment Analysis Model with Affective Enhancement and Syntactic Enhancement 计算机科学, 2023, 50(3): 3-11. https://doi.org/10.11896/jsjkx.220700238 |
[14] | 陈富强, 寇嘉敏, 苏利敏, 李克. 基于图神经网络的多信息优化实体对齐模型 Multi-information Optimized Entity Alignment Model Based on Graph Neural Network 计算机科学, 2023, 50(3): 34-41. https://doi.org/10.11896/jsjkx.220700242 |
[15] | 周明强, 代开浪, 吴全旺, 朱庆生. 异构信息网络的注意力感知多通道图卷积评分预测模型 Attention-aware Multi-channel Graph Convolutional Rating Prediction Model for Heterogeneous Information Networks 计算机科学, 2023, 50(3): 129-138. https://doi.org/10.11896/jsjkx.220300004 |
|