计算机科学 ›› 2023, Vol. 50 ›› Issue (5): 155-160.doi: 10.11896/jsjkx.220400035
王先旺, 周浩, 张明慧, 朱尤伟
WANG Xianwang, ZHOU Hao, ZHANG Minghui, ZHU Youwei
摘要: 卷积神经网络(CNNs)具有出色的局部上下文建模能力,被广泛用于高光谱图像分类中,但由于其固有网络主干的局限性,CNNs未能很好地挖掘和表示光谱特征的序列属性。为了解决此问题,提出了一种基于Swin Transformer和三维残差多层融合网络的新型网络(ReSTrans)用于高光谱图像分类。在ReSTrans网络中,为了尽可能地挖掘高光谱图像的深层特征,采用三维残差多层融合网络来提取空谱特征,然后由基于自注意机制的Swin Transformer网络模块近一步捕获连续光谱间的关系,最后由多层感知机根据空谱联合特征完成最终的分类任务。为了验证ReSTrans网络模型的有效性,改进的模型在IP,UP和KSC 3个高光谱数据集上进行实验验证,分类精度分别达到了98.65%,99.64%,99.78%。与SST方法相比,该网络模型的分类性能分别平均提高了3.55%,0.68%,1.87%。实验结果表明该模型具有很好的泛化能力,可以提取更深层的、判别性的特征。
中图分类号:
[1]REN S G,WAN S,GU X J,et al.Hyper-spectral image classifi-cation based on multi-scale spatial spectrum identification features[J].Computer Science,2018,45(12):243-250. [2]ZHU N,LI M.Multilevel selective kernel convolution for retina image classification[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2022,34(5):886-893. [3]LV W,WANG X.Overview of Hyperspectral Image Classification[J].Journal of Sensors,2020,2020(2):1-13. [4]HAUT J M,PAOLETTI M E,PLAZA J,et al.Visual attention-driven hyperspectral image classification[J].IEEE Transactions on Geos-cience and Remote Sensing,2019,57(10):8065-8080. [5]WEI X P,YU X C,TAN X,et al.CNN and 3D Gabor filter for hyperspectral image classifica-tion[J].Journal of Computer Aided Design and Graphics,2020,32(1):90-98. [6]HE M,LI B,CHEN H,et al.Multi-scale 3D deep convolutional neural network for hyperspectral image classification[C]//2017 IEEE International Conference on Image Processing(ICIP).IEEE,2017:3904-3908. [7]HANG R,LIU Q,HONG D,et al.Cascaded recurrent neural networks for hyperspectral image classification[J].IEEE Transac-tions on Geoscience and Remote Sensing,2019,57(8):5384-5394. [8]MÜLLER G,RIOS M,SENNRICH A,et al.Why Self-Attention? A Targeted Evaluation of Neural Machine Translation Architectures[J].arXiv:1808.08946,2018. [9]CARION N,MASSA F,SYNNAEVE G,et al.End-to-end object detection with trans-formers[C]//European Conference on Computer Vision.Berlin:Springer,2020:213-219. [10]RAMACHANDRAN P,PARMAR N,VASWANI A,et al.Stand-Alone Self-Attention in Vision Models[J].arXiv:1906.05909,2019. [11]LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:10012-10022. [12]HU W,HUANG Y Y,LI H C,et al.Deep Convolutional Neural Networks for Hyper-spectral Image Classification[J].Journal of Sensors,2015,2015:1-12. [13]LIU,B,YU X C,ZHANG P Q,et al,A semi-supervised convolutional neural network for hyper-spectral image classification[J].Remote Sensing Letters,2017,8(9):839-848. [14]HAMID A B,BENOIT A,LAMBERT P,et al.3D deep learningapproach for remote sensing image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2018,56(8):4420-4434. [15]HARA K,KATAOKA H,SATOH Y.Learning spatio-temporal features with 3d residual networks for action recognition[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops.2017. [16]HE X,CHEN Y,LIN Z.Spatial-spectral transformer for hyperspectral image classification[J].Remote Sensing,2021,13(3):498. |
|