计算机科学 ›› 2023, Vol. 50 ›› Issue (5): 155-160.doi: 10.11896/jsjkx.220400035
王先旺, 周浩, 张明慧, 朱尤伟
WANG Xianwang, ZHOU Hao, ZHANG Minghui, ZHU Youwei
摘要: 卷积神经网络(CNNs)具有出色的局部上下文建模能力,被广泛用于高光谱图像分类中,但由于其固有网络主干的局限性,CNNs未能很好地挖掘和表示光谱特征的序列属性。为了解决此问题,提出了一种基于Swin Transformer和三维残差多层融合网络的新型网络(ReSTrans)用于高光谱图像分类。在ReSTrans网络中,为了尽可能地挖掘高光谱图像的深层特征,采用三维残差多层融合网络来提取空谱特征,然后由基于自注意机制的Swin Transformer网络模块近一步捕获连续光谱间的关系,最后由多层感知机根据空谱联合特征完成最终的分类任务。为了验证ReSTrans网络模型的有效性,改进的模型在IP,UP和KSC 3个高光谱数据集上进行实验验证,分类精度分别达到了98.65%,99.64%,99.78%。与SST方法相比,该网络模型的分类性能分别平均提高了3.55%,0.68%,1.87%。实验结果表明该模型具有很好的泛化能力,可以提取更深层的、判别性的特征。
中图分类号:
[1]REN S G,WAN S,GU X J,et al.Hyper-spectral image classifi-cation based on multi-scale spatial spectrum identification features[J].Computer Science,2018,45(12):243-250. [2]ZHU N,LI M.Multilevel selective kernel convolution for retina image classification[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2022,34(5):886-893. [3]LV W,WANG X.Overview of Hyperspectral Image Classification[J].Journal of Sensors,2020,2020(2):1-13. [4]HAUT J M,PAOLETTI M E,PLAZA J,et al.Visual attention-driven hyperspectral image classification[J].IEEE Transactions on Geos-cience and Remote Sensing,2019,57(10):8065-8080. [5]WEI X P,YU X C,TAN X,et al.CNN and 3D Gabor filter for hyperspectral image classifica-tion[J].Journal of Computer Aided Design and Graphics,2020,32(1):90-98. [6]HE M,LI B,CHEN H,et al.Multi-scale 3D deep convolutional neural network for hyperspectral image classification[C]//2017 IEEE International Conference on Image Processing(ICIP).IEEE,2017:3904-3908. [7]HANG R,LIU Q,HONG D,et al.Cascaded recurrent neural networks for hyperspectral image classification[J].IEEE Transac-tions on Geoscience and Remote Sensing,2019,57(8):5384-5394. [8]MÜLLER G,RIOS M,SENNRICH A,et al.Why Self-Attention? A Targeted Evaluation of Neural Machine Translation Architectures[J].arXiv:1808.08946,2018. [9]CARION N,MASSA F,SYNNAEVE G,et al.End-to-end object detection with trans-formers[C]//European Conference on Computer Vision.Berlin:Springer,2020:213-219. [10]RAMACHANDRAN P,PARMAR N,VASWANI A,et al.Stand-Alone Self-Attention in Vision Models[J].arXiv:1906.05909,2019. [11]LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:10012-10022. [12]HU W,HUANG Y Y,LI H C,et al.Deep Convolutional Neural Networks for Hyper-spectral Image Classification[J].Journal of Sensors,2015,2015:1-12. [13]LIU,B,YU X C,ZHANG P Q,et al,A semi-supervised convolutional neural network for hyper-spectral image classification[J].Remote Sensing Letters,2017,8(9):839-848. [14]HAMID A B,BENOIT A,LAMBERT P,et al.3D deep learningapproach for remote sensing image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2018,56(8):4420-4434. [15]HARA K,KATAOKA H,SATOH Y.Learning spatio-temporal features with 3d residual networks for action recognition[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops.2017. [16]HE X,CHEN Y,LIN Z.Spatial-spectral transformer for hyperspectral image classification[J].Remote Sensing,2021,13(3):498. |
[1] | 杨斌, 梁婧, 周佳薇, 赵梦赐. 基于注意力机制的可解释点击率预估模型研究 Study on Interpretable Click-Through Rate Prediction Based on Attention Mechanism 计算机科学, 2023, 50(5): 12-20. https://doi.org/10.11896/jsjkx.221000032 |
[2] | 王鹏宇, 台文鑫, 刘芳, 钟婷, 罗绪成, 周帆. 基于数据增强的自监督飞行航迹预测 Self-supervised Flight Trajectory Prediction Based on Data Augmentation 计算机科学, 2023, 50(2): 130-137. https://doi.org/10.11896/jsjkx.211200016 |
[3] | 张婧媛, 王宏霞, 何沛松. 基于Transformer的多任务图像拼接篡改检测算法 Multitask Transformer-based Network for Image Splicing Manipulation Detection 计算机科学, 2023, 50(1): 114-122. https://doi.org/10.11896/jsjkx.211100269 |
[4] | 金方焱, 王秀利. 融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取 Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM 计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190 |
[5] | 张嘉淏, 刘峰, 齐佳音. 一种基于Bottleneck Transformer的轻量级微表情识别架构 Lightweight Micro-expression Recognition Architecture Based on Bottleneck Transformer 计算机科学, 2022, 49(6A): 370-377. https://doi.org/10.11896/jsjkx.210500023 |
[6] | 赵丹丹, 黄德根, 孟佳娜, 董宇, 张攀. 基于BERT-GRU-ATT模型的中文实体关系分类 Chinese Entity Relations Classification Based on BERT-GRU-ATT 计算机科学, 2022, 49(6): 319-325. https://doi.org/10.11896/jsjkx.210600123 |
[7] | 胡艳丽, 童谭骞, 张啸宇, 彭娟. 融入自注意力机制的深度学习情感分析方法 Self-attention-based BGRU and CNN for Sentiment Analysis 计算机科学, 2022, 49(1): 252-258. https://doi.org/10.11896/jsjkx.210600063 |
[8] | 徐少伟, 秦品乐, 曾建朝, 赵致楷, 高媛, 王丽芳. 基于多级特征和全局上下文的纵膈淋巴结分割算法 Mediastinal Lymph Node Segmentation Algorithm Based on Multi-level Features and Global Context 计算机科学, 2021, 48(6A): 95-100. https://doi.org/10.11896/jsjkx.200700067 |
[9] | 王习, 张凯, 李军辉, 孔芳, 张熠天. 联合自注意力和循环网络的图像标题生成 Generation of Image Caption of Joint Self-attention and Recurrent Neural Network 计算机科学, 2021, 48(4): 157-163. https://doi.org/10.11896/jsjkx.200300146 |
[10] | 周小诗, 张梓葳, 文娟. 基于神经网络机器翻译的自然语言信息隐藏 Natural Language Steganography Based on Neural Machine Translation 计算机科学, 2021, 48(11A): 557-564. https://doi.org/10.11896/jsjkx.210100015 |
[11] | 王燕, 王丽. 面向高光谱图像分类的局部Gabor卷积神经网络 Local Gabor Convolutional Neural Network for Hyperspectral Image Classification 计算机科学, 2020, 47(6): 151-156. https://doi.org/10.11896/jsjkx.190500147 |
[12] | 张鹏飞, 李冠宇, 贾彩燕. 面向自然语言推理的基于截断高斯距离的自注意力机制 Truncated Gaussian Distance-based Self-attention Mechanism for Natural Language Inference 计算机科学, 2020, 47(4): 178-183. https://doi.org/10.11896/jsjkx.190600149 |
[13] | 康雁,崔国荣,李浩,杨其越,李晋源,王沛尧. 融合自注意力机制和多路金字塔卷积的软件需求聚类算法 Software Requirements Clustering Algorithm Based on Self-attention Mechanism and Multi- channel Pyramid Convolution 计算机科学, 2020, 47(3): 48-53. https://doi.org/10.11896/jsjkx.190700146 |
[14] | 张义杰, 李培峰, 朱巧明. 基于自注意力机制的事件时序关系分类方法 Event Temporal Relation Classification Method Based on Self-attention Mechanism 计算机科学, 2019, 46(8): 244-248. https://doi.org/10.11896/j.issn.1002-137X.2019.08.040 |
[15] | 凡子威, 张民, 李正华. 基于BiLSTM并结合自注意力机制和句法信息的隐式篇章关系分类 BiLSTM-based Implicit Discourse Relation Classification Combining Self-attention Mechanism and Syntactic Information 计算机科学, 2019, 46(5): 214-220. https://doi.org/10.11896/j.issn.1002-137X.2019.05.033 |
|