计算机科学 ›› 2023, Vol. 50 ›› Issue (2): 130-137.doi: 10.11896/jsjkx.211200016

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于数据增强的自监督飞行航迹预测

王鹏宇1, 台文鑫1, 刘芳2, 钟婷1, 罗绪成1, 周帆1   

  1. 1 电子科技大学信息与软件工程学院 成都 610054
    2中国民用航空飞行学院 四川 广汉 618307
  • 收稿日期:2021-12-01 修回日期:2022-08-03 出版日期:2023-02-15 发布日期:2023-02-22
  • 通讯作者: 钟婷(zhongting@uestc.edu.cn)
  • 作者简介:(p.y.wang@std.uestc.edu.cn)
  • 基金资助:
    四川省自然科学基金(2022NSFSC0505,2022NSFSC0956);四川省青年软件创新工程资助项目(2021023);四川省科技计划(2022YFSY0006, 2020YFG0053);国家自然科学基金(62176043,62072077)

Self-supervised Flight Trajectory Prediction Based on Data Augmentation

WANG Pengyu1, TAI Wenxin1, LIU Fang2, ZHONG Ting1, LUO Xucheng1, ZHOU Fan1   

  1. 1 School of Information and Software Engineering,University of Electronic Science and Technology of China,Chengdu 610054,China
    2 Civil Aviation Flight University of China,Guanghan,Sichuan 618307,China
  • Received:2021-12-01 Revised:2022-08-03 Online:2023-02-15 Published:2023-02-22
  • Supported by:
    Natural Science Foundation of Sichuan Province(2022NSFSC0505,2022NSFSC0956),Sichuan Youth Software Innovation Project Funding Project(2021023),Sichuan Science and Technology Program(2022YFSY0006,2020YFG0053) and National Natural Science Foundation of China(62176043,62072077)

摘要: 准确的飞行航迹预测可以帮助空中交通管理系统对潜在的危险提出预警,并有效地为安全出行提供指导。飞机飞行所处的大气情况复杂多变,飞行航迹受大气扰动、空中云层等外部因素的影响很大,使得飞行航迹预测问题十分复杂和困难。另外,由于某些飞行区域所在的地面环境恶劣,无法部署足够的信号基站,而某些飞行区域的飞行信号由多个信号基站采集组合而成,造成最终得到的飞行航迹数据存在稀疏和含噪等问题,进一步增加了飞行航迹预测的难度。文中提出了一种基于数据增强的自监督飞行航迹学习方法。此方法采用基于正则化的数据增强方式,扩充了稀疏的航迹数据集并处理了数据中包含的异常值,利用最大化互信息的方式进行自监督预训练,以挖掘飞行航迹中蕴含的运动模式和航行意图,采用一种带有蒸馏机制的多头自注意力模型作为基础模型,解除了循环神经网络长期依赖和无法并行计算的限制,并利用注意力蒸馏机制和生成式解码方式降低了模型的复杂度,加快了其训练和预测的速度。在飞行航迹数据集上的评测结果显示,此方法较目前预测表现最优秀的方法在纬度、经度和高度上的预测结果的均方根误差各减少了20.8%,26.4%和25.6%,极大地提高了预测准确性。

关键词: 飞行航迹预测, 自监督学习, 自注意力机制, 深度学习

Abstract: Accurate flight trajectory predictions can help air traffic management systems make warnings for potential hazards and effectively provide guidance for safe travel.However,the atmospheric situation in which the planes flying is complicated and changeable.The flight track is affected by external factors such as atmospheric disturbance,the air cloud,making prediction difficult.In addition,due to the harsh ground environment where some flight areas are located,it is impossible to deploy enough signal base stations,while the flight signals in some flight areas are collected and combined by multiple signal base stations,resulting in sparse and noisy aircraft track data,which further increases the difficulty of flight track prediction.This paper proposes a technically enhanced self-supervision flight trajectory learning method.This method uses a regularization-based data enhancement mode to extend the sparse track data and process the abnormal values included in the dataset.It provides a self-supervised learning diagram by maximizing mutual information to dig the mobility pattern contained in the flight trajectory.The method employs a multi-head self-attention model with a distillation mechanism as a fundamental model to solve the long-term dependence problem of the recurrent neural network.In addition,the approach uses the distillation mechanism to reduce the complexity of the model and utilizes the generating decoding method to accelerate the speed of its training and prediction.The evaluation results on the flight trajectory dataset show that our method has a significant increase in the results of trajectory prediction compared with the state-of-the-art method that our approach reduces the root mean square error of the prediction results in latitude,longitude,and altitude by 20.8%,26.4%,and 25.6%,respectively.

Key words: Flight trajectory prediction, Self-supervised learning, Self-attention, Deep learning

中图分类号: 

  • TP183
[1]CHATTERJI G.Short-term trajectory prediction methods[C]//Guidance,Navigation,and Control Conference and Exhibit.1999:4233.
[2]AVANZINI G.Frenet-based algorithm for trajectory prediction[J].Journal of Guidance,Control,and Dynamics,2004,27(1):127-135.
[3]SEAH C E,HWANG I.Terminal-area aircraft tracking using hybrid estimation[J].Journal of Guidance,Control,and Dyna-mics,2009,32(3):836-849.
[4]LYMPEROPOULOS I,LYGEROS J,LECCHINI A.Modelbased aircraft trajectory prediction during takeoff[C]//AIAA Guidance,Navigation,and Control Conference and Exhibit.2006.
[5]SCHUSTER W.Trajectory prediction for future air traffic ma-nagement-complex manoeuvres and taxiing[J].The Aeronautical Journal,2015,119(1212):121-143.
[6]YUAN C,LI D,XI Y.Campus trajectory forecast based on human activity cycle and Markov method[C]//2015 IEEE International Conference on Cyber Technology in Automation,Control,and Intelligent Systems(CYBER).IEEE,2015:941-946.
[7]WANG B,HU Y,SHOU G,et al.Trajectory prediction in campus based on Markov chains[C]//International Conference on Big Data Computing and Communications.Cham:Springer,2016:145-154.
[8]AWAD M A,KHALIL I.Prediction of user's web-browsing behavior:Application of markov model[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B(Cybernetics),2012,42(4):1131-1142.
[9]SHI Z,XU M,PAN Q,et al.LSTM-based flight trajectory prediction[C]//2018 International Joint Conference on Neural Networks(IJCNN).IEEE,2018:1-8.
[10]ZENG W,QUAN Z,ZHAO Z,et al.A deep learning approach for aircraft trajectory prediction in terminal airspace[J].IEEE Access,2020,8:151250-151266.
[11]MA L,TIAN S.A hybrid CNN-LSTM model for aircraft 4D trajectory prediction[J].IEEE Access,2020,8:134668-134680.
[12]CHEN T,KORNBLITH S,NOROUZI M,et al.A simpleframework for contrastive learning of visual representations[C]//International Conference on Machine Learning.PMLR,2020:1597-1607.
[13]WU J,WANG X,WANG W Y.Self-supervised dialogue lear-ning[J].arXiv:1907.00448,2019.
[14]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems.2017:5998-6008.
[15]LE FABLEC Y,ALLIOT J M.Using Neural Networks to Predict Aircraft Trajectories[C]//IC-AI.1999:524-529.
[16]TASTAMBEKOV K,PUECHMOREL S,DELAHAYE D,et al.Aircraft trajectory forecasting using local functional regression in Sobolev space[J].Transportation Research Part C:Emerging Technologies,2014,39:1-22.
[17]WANG Z,LIANG M,DELAHAYE D.Short-term 4d trajectory prediction using machine learning methods[C]// Proceedings and Digests.2017:1-10.
[18]HERNÁNDEZ A M,MAGAÑA E J C,BERNA A G.Data-dri-ven aircraft trajectory predictions using ensemble meta-estimators[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference(DASC).IEEE,2018:1-10.
[19]BARRATT S T,KOCHENDERFER M J,BOYD S P.Learning probabilistic trajectory models of aircraft in terminal airspace from position data[J].IEEE Transactions on Intelligent Transportation Systems,2018,20(9):3536-3545.
[20]ALLIGIER R,GIANAZZA D,DURAND N.Learning the aircraft mass and thrust to improve the ground-based trajectory prediction of climbing flights[J].Transportation Research Part C:Emerging Technologies,2013,36:45-60.
[21]ALLIGIER R,GIANAZZA D.Learning aircraft operational factors to improve aircraft climb prediction:A large scale multi-airport study[J].Transportation Research Part C:Emerging Technologies,2018,96:72-95.
[22]GUAN X,LV R,SUN L,et al.A study of 4D trajectory prediction based on machine deep learning[C]//2016 12th World Congress on Intelligent Control and Automation(WCICA).IEEE,2016:24-27.
[23]BELGHAZI M I,BARATIN A,RAJESWAR S,et al.Mine:mutual information neural estimation[J].arXiv:1801.04062,2018.
[24]GRILL J B,STRUB F,ALTCHÉ F,et al.Bootstrap your own latent:A new approach to self-supervised learning[J].arXiv:2006.07733,2020.
[25]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018.
[26]KONG L,D'AUTUME C M,LING W,et al.A mutual information maximization perspective of language representation lear-ning[J].arXiv:1910.08350,2019.
[27]OORD A,LI Y,VINYALS O.Representation learning with contrastive predictive coding[J].arXiv:1807.03748,2018.
[28]MA Z,COLLINS M.Noise contrastive estimation and negative sampling for conditional models:Consistency and statistical efficiency[J].arXiv:1809.01812,2018.
[1] 董永峰, 黄港, 薛婉若, 李林昊.
融合IRT的图注意力深度知识追踪模型
Graph Attention Deep Knowledge Tracing Model Integrated with IRT
计算机科学, 2023, 50(3): 173-180. https://doi.org/10.11896/jsjkx.211200134
[2] 华晓凤, 冯娜, 于俊清, 何云峰.
基于规则推理的足球视频任意球射门事件检测
Shooting Event Detection of Free Kick in Soccer Video Based on Rule Reasoning
计算机科学, 2023, 50(3): 181-190. https://doi.org/10.11896/jsjkx.220300062
[3] 梅鹏程, 杨吉斌, 张强, 黄翔.
一种基于三维卷积的声学事件联合估计方法
Sound Event Joint Estimation Method Based on Three-dimension Convolution
计算机科学, 2023, 50(3): 191-198. https://doi.org/10.11896/jsjkx.220500259
[4] 白雪飞, 马亚楠, 王文剑.
基于特征融合的边缘引导乳腺超声图像分割方法
Segmentation Method of Edge-guided Breast Ultrasound Images Based on Feature Fusion
计算机科学, 2023, 50(3): 199-207. https://doi.org/10.11896/jsjkx.211200294
[5] 刘航, 普园媛, 吕大华, 赵征鹏, 徐丹, 钱文华.
极化自注意力约束颜色溢出的图像自动上色
Polarized Self-attention Constrains Color Overflow in Automatic Coloring of Image
计算机科学, 2023, 50(3): 208-215. https://doi.org/10.11896/jsjkx.220100149
[6] 陈亮, 王璐, 李生春, 刘昌宏.
基于深度学习的可视化仪表板生成技术研究
Study on Visual Dashboard Generation Technology Based on Deep Learning
计算机科学, 2023, 50(3): 238-245. https://doi.org/10.11896/jsjkx.230100064
[7] 张译, 吴秦.
特征增强损失与前景注意力人群计数网络
Crowd Counting Network Based on Feature Enhancement Loss and Foreground Attention
计算机科学, 2023, 50(3): 246-253. https://doi.org/10.11896/jsjkx.220100219
[8] 应宗浩, 吴槟.
深度学习模型的后门攻击研究综述
Backdoor Attack on Deep Learning Models:A Survey
计算机科学, 2023, 50(3): 333-350. https://doi.org/10.11896/jsjkx.220600031
[9] 邹芸竹, 杜圣东, 滕飞, 李天瑞.
一种基于多模态深度特征融合的视觉问答模型
Visual Question Answering Model Based on Multi-modal Deep Feature Fusion
计算机科学, 2023, 50(2): 123-129. https://doi.org/10.11896/jsjkx.211200303
[10] 郭楠, 李婧源, 任曦.
基于深度学习的刚体位姿估计方法综述
Survey of Rigid Object Pose Estimation Algorithms Based on Deep Learning
计算机科学, 2023, 50(2): 178-189. https://doi.org/10.11896/jsjkx.211200164
[11] 李俊林, 欧阳智, 杜逆索.
基于改进区域候选网络的场景文本检测
Scene Text Detection with Improved Region Proposal Network
计算机科学, 2023, 50(2): 201-208. https://doi.org/10.11896/jsjkx.211000191
[12] 华杰, 刘学亮, 赵烨.
基于特征融合的小样本目标检测
Few-shot Object Detection Based on Feature Fusion
计算机科学, 2023, 50(2): 209-213. https://doi.org/10.11896/jsjkx.220500153
[13] 朱磊, 王善敏, 刘青山.
基于人脸部件掩膜的自监督三维人脸重建
Self-supervised 3D Face Reconstruction Based on Detailed Face Mask
计算机科学, 2023, 50(2): 214-220. https://doi.org/10.11896/jsjkx.220600035
[14] 梁佳利, 华保健, 苏少博.
融合循环划分的张量指令生成优化
Tensor Instruction Generation Optimization Fusing with Loop Partitioning
计算机科学, 2023, 50(2): 374-383. https://doi.org/10.11896/jsjkx.220300147
[15] 蔡肖, 陈志华, 盛斌.
基于移位窗口金字塔Transformer的遥感图像目标检测
SPT:Swin Pyramid Transformer for Object Detection of Remote Sensing
计算机科学, 2023, 50(1): 105-113. https://doi.org/10.11896/jsjkx.211100208
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!