计算机科学 ›› 2023, Vol. 50 ›› Issue (5): 302-312.doi: 10.11896/jsjkx.220500120

• 计算机网络 • 上一篇    下一篇

6G重叠区域中基于博弈论的任务卸载策略

高丽雪, 陈昕, 殷波   

  1. 北京信息科技大学计算机学院 北京 100101
  • 收稿日期:2022-05-16 修回日期:2022-10-15 出版日期:2023-05-15 发布日期:2023-05-06
  • 通讯作者: 陈昕(chenxin@bistu.edu.cn)
  • 作者简介:(gaolixue@bistu.edu.cn)
  • 基金资助:
    国家自然科学基金面上项目(61872044)

Task Offloading Strategy Based on Game Theory in 6G Overlapping Area

GAO Lixue, CHEN Xin, YIN Bo   

  1. School of Computer Science,Beijing Information Science and Technology University,Beijing 100101,China
  • Received:2022-05-16 Revised:2022-10-15 Online:2023-05-15 Published:2023-05-06
  • About author:GAO Lixue,born in 1997,postgraduate.Her main research interests include next generation network,edge computing,performance evaluation of wireless networks and game theory.
    CHEN Xin,born in 1965,Ph.D,professor,is a senior member of China Computer Federation.His main research interests include next generation network and performance evaluation of wireless networks.
  • Supported by:
    National Natural Science Foundation of China(61872044).

摘要: 为实现6G网络基站服务范围重叠区域内复杂任务的高效计算,对重叠区域的任务卸载问题展开研究。在综合考虑任务时延约束、系统能耗、社会效应以及经济激励的基础上,构建多基站多物联网设备的多接入边缘计算网络模型,联合优化基站定价策略、物联网设备基站选择策略和任务卸载策略,实现基站利润和物联网设备效用的最大化。为解决重叠区域中物联网设备基站选择的问题,构建了多对一匹配博弈模型,提出基于交换匹配的基站选择算法优化物联网设备的基站选择策略。引入斯坦伯格博弈理论建立基站与物联网设备间定价和任务卸载交互的两阶段博弈模型,通过反向归纳法证明斯坦伯格均衡的存在性和唯一性。提出了基于博弈论的最优价格最佳响应算法(Optimal pricing and Best response algorithm based on Game Theory,OBGT),以获得基站和物联网设备的均衡策略。仿真实验和对比实验表明,OBGT算法可以在短时间内达到收敛,有效提高基站利润和物联网设备效用。

关键词: 第六代通信网络, 多接入边缘计算, 任务卸载, 匹配博弈, 斯坦伯格博弈

Abstract: In order to realize the efficient computing of complex tasks in the overlapping area of 6G network base station(BS) service,the task offloading problem in the overlapping area is studied.Based on the comprehensive consideration of delay constraints,energy consumption,social effects and economic incentives,a multi-access edge computing network model with multiple BSs and multiple Internet of things(IoT) devices is constructed,and the BSs pricing strategy,the base station selection strategy and the task offloading strategy of IoT devices are jointly optimized to maximize the profit of BSs and the utility of IoT devices.To solve the problem of base station selection for IoT devices in overlapping areas,a many-to-one matching game model is built,and the BSs selection algorithm based on swap matching is proposed.A two-stage game model for pricing and task offloading interaction between BSs and IoT devices is established by introducing Stackelberg game theory,the existence and uniqueness of Stackelberg equilibrium are proved by backward induction.The optimal price and best response algorithm based on game theory(OBGT) based on game theory is proposed.Simulation and comparison experiments illustrate that OBGT algorithm can achieve convergence in a short time,and effectively improve the profit of BSs and the utility of IoT devices.

Key words: 6G, Multi-access edge computing, Task offloading, Matching game, Stackelberg game

中图分类号: 

  • TP393
[1]JI B,WANG Y,SONG K,et al.A Survey of Computational Intelligence for 6G:Key Technologies,Applications and Trends[J].IEEE Transactions on Industrial Informatics,2021,17(10):7145-7154.
[2]VERMA S,KAUR S,KHAN A.et al.Toward Green Communi-cation in 6G-Enabled Massive Internet of Things[J].IEEE Internet of Things Journal,2021,8(7):5408-5415.
[3]LIU T,FANG L,GAO H.Survey of Task Offloading in Edge Computing[J].Computer Science,2021,48(1):11-15.
[4]CHU W,YU P,YU Z,et al.Online Optimal Service Selection,Resource Allocation and Task Offloading for Multi-Access Edge Computing:A Utility-based Approach[J].IEEE Transactions on Mobile Computing,2022.
[5]CUI Y,ZHANG D,ZHANG T,et al.A Multi-User Fine-Grained Task Offloading Scheduling Approach of Mobile Edge Computing[J].Journal of Electronics,2021,49(11):2202-2207.
[6]IBRAR M,WANG L,AKBAR A,et al.3-D-SIS:A 3-D-SocialIdentifier Structure for Collaborative Edge Computing Based Social IoT[J].IEEE Transactions on Computational Social Systems,2022,9(1):313-323.
[7]NIE J,LUO J,XIONG Z,et al.A Multi-Leader Multi-FollowerGame-Based Analysis for Incentive Mechanisms in Socially-Aware Mobile Crowdsensing[J].IEEE Transactions on Wireless Communications,2021,20(3):1457-1471.
[8]GUO K,GAO R,XIA W,et al.Online Learning Based Computation Offloading in MEC Systems with Communication and Computation Dynamics[J].IEEE Transactions on Communications,2021,69(2):1147-1162.
[9]CHEN X,ZHANG Y,CHEN Y.Cost-Efficient Request Schedu-ling and Resource Provisioning in Multiclouds for Internet of Things[J].IEEE Internet of Things Journal,2020,7(3):1594-1602.
[10]MAO Y,ZHOU T,LIU P.Multi-user Task Offloading Based on Delayed Acceptance[J].Computer Science,2021,48(1):49-57.
[11]CHEN J,ZHAO Y,GAO J,et al.Resource allocation strategy for mobile edge computing system based on hybrid energy harvesting[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2021,33(2):193-201.
[12]ZHANG X,WANG J,POOR H.Optimal Resource Allocations for Statistical QoS Provisioning to Support mURLLC Over FBC-EH-Based 6G THz Wireless Nano-Networks[J].IEEE Journal on Selected Areas in Communications,2021,39(6):1544-1560.
[13]ALE L,ZHANG N,FANG X,et al.Delay-Aware and Energy-Efficient Computation Offloading in Mobile-Edge Computing Using Deep Reinforcement Learning[J].IEEE Transactions on Cognitive Communications and Networking,2021,7(3):881-892.
[14]LI J,LIANG W,XU W,et al.Maximizing User Service Satisfaction for Delay-Sensitive IoT Applications in Edge Computing[J].IEEE Transactions on Parallel and Distributed Systems,2022,33(5):1199-1212.
[15]HE X,WANG S,WANG X.Providing Worst-Case LatencyGuarantees with Collaborative Edge Servers[J].IEEE Tran-sactions on Mobile Computing,2023,22(5):2955-2971.
[16]TAO M,OTA K,DONG M,et al.Stackelberg Game based Pricing and Offloading in Mobile Edge Computing[J].IEEE Wireless Communications Letters,2022,11(5):883-887.
[17]WANG R,ZANG C,HE P,et al.Auction Pricing-Based TaskOffloading Strategy for Cooperative Edge Computing[C]//IEEE Global Communications Conference(GLOBECOM).IEEE Computer Society,2021:1-6.
[18]YUAN J,SUN H,GONG K,et al.Research on intelligent computing offloading model based on reputation value in mobile edge computing[J].Journal on Communications,2020,41(7):141-151.
[19]APOSTOLOPOULOS P,TSIROPOULOU E,PAPAVASSIL-IOU S.Risk-Aware Data Offloading in Multi-Server Multi-Access Edge Computing Environment[J].IEEE/ACM Transactions on Networking,2020,28(3):1405-1418.
[20]QI X,XU H,MA Z.Joint Network Selection and Task Offloa-ding in Mobile Edge Computing[C]//IEEE/ACM Interna-tional Symposium on Cluster,Cloud and Internet Computing(CCGrid).IEEE Computer Society,2021:475-482.
[21]HUANG J,WANG M,WU Y,et al.Distributed Offloading inOverlapping Areas of Mobile Edge Computing for Internet of Things[J].IEEE Internet of Things Journal,2022,9(15):13837-13847.
[22]LI F,YAO H,DU J,et al.Stackelberg Game-Based Computa-tion Offloading in Social and Cognitive Industrial Internet of Things[J].IEEE Transactions on Industrial Informatics,2020,16(8):5444-5455.
[23]SHENG M,WANG Y,WANG X,et al.Energy-Efficient Multiuser Partial Computation Offloading with Collaboration of Terminals,Radio Access Network,and Edge Server[J].IEEE Transactions on Communications,2020,68(3):1524-1537.
[24]XIE S,LI H,LI L,et al.Reliable and energy-aware job offloa-ding at terahertz frequencies for mobile edge computing[J].China Communications,2020,17(12):17-36.
[25]LI Q,NAYAK A,WANG X,et al.A Collaborative Caching-Transmission Method for Heterogeneous Video Services in Cache-Enabled Terahertz Heterogeneous Networks[J].IEEE Transactions on Vehicular Technology,2022,71(3):3187-3200.
[26]PATRIZI N,FRAGKOS G,ORTIZK,et al.A UAV-enabledDynamic Multi-Target Tracking and Sensing Framework[C]//IEEE Global Communications Conference.IEEE Computer Society,2020:1-6.
[1] 裴翠, 范贵生, 虞慧群, 岳一鸣.
基于拍卖的边缘云期限感知任务卸载策略
Auction-based Edge Cloud Deadline-aware Task Offloading Strategy
计算机科学, 2023, 50(4): 241-248. https://doi.org/10.11896/jsjkx.211200194
[2] 尚玉叶, 袁家斌.
深空环境中基于云边端协同的任务卸载方法
Task Offloading Method Based on Cloud-Edge-End Cooperation in Deep Space Environment
计算机科学, 2023, 50(2): 80-88. https://doi.org/10.11896/jsjkx.220800156
[3] 李梦菲, 毛莺池, 屠子健, 王瑄, 徐淑芳.
基于深度确定性策略梯度的服务器可靠性任务卸载策略
Server-reliability Task Offloading Strategy Based on Deep Deterministic Policy Gradient
计算机科学, 2022, 49(7): 271-279. https://doi.org/10.11896/jsjkx.210600040
[4] 谢万城, 李斌, 代玥玥.
空中智能反射面辅助边缘计算中基于PPO的任务卸载方案
PPO Based Task Offloading Scheme in Aerial Reconfigurable Intelligent Surface-assisted Edge Computing
计算机科学, 2022, 49(6): 3-11. https://doi.org/10.11896/jsjkx.220100249
[5] 邱旭, 卞浩卜, 吴铭骁, 朱晓荣.
基于5G毫米波通信的高速公路车联网任务卸载算法研究
Study on Task Offloading Algorithm for Internet of Vehicles on Highway Based on 5G MillimeterWave Communication
计算机科学, 2022, 49(6): 25-31. https://doi.org/10.11896/jsjkx.211100198
[6] 高月红, 陈露.
移动边缘计算中任务卸载研究综述
Survey of Research on Task Offloading in Mobile Edge Computing
计算机科学, 2022, 49(11A): 220400161-7. https://doi.org/10.11896/jsjkx.220400161
[7] 王晨华, 侯守璐, 刘秀磊.
边云协同计算中成本感知的物联网数据处理方法
Cost-aware IoT Data Processing in Edge-Cloud Collaborative Computing
计算机科学, 2022, 49(11A): 211000101-7. https://doi.org/10.11896/jsjkx.211000101
[8] 梁俊斌, 张海涵, 蒋婵, 王天舒.
移动边缘计算中基于深度强化学习的任务卸载研究进展
Research Progress of Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing
计算机科学, 2021, 48(7): 316-323. https://doi.org/10.11896/jsjkx.200800095
[9] 宋海宁, 焦健, 刘永.
高速公路中的移动边缘计算研究
Research on Mobile Edge Computing in Expressway
计算机科学, 2021, 48(6A): 383-386. https://doi.org/10.11896/jsjkx.200900212
[10] 刘通, 方璐, 高洪皓.
边缘计算中任务卸载研究综述
Survey of Task Offloading in Edge Computing
计算机科学, 2021, 48(1): 11-15. https://doi.org/10.11896/jsjkx.200900217
[11] 梁俊斌, 田凤森, 蒋婵, 王天舒.
物联网中多设备多服务器的移动边缘计算任务卸载技术综述
Survey on Task Offloading Techniques for Mobile Edge Computing with Multi-devices and Multi-servers in Internet of Things
计算机科学, 2021, 48(1): 16-25. https://doi.org/10.11896/jsjkx.200500095
[12] 毛莺池, 周彤, 刘鹏飞.
基于延迟接受的多用户任务卸载策略
Multi-user Task Offloading Based on Delayed Acceptance
计算机科学, 2021, 48(1): 49-57. https://doi.org/10.11896/jsjkx.200600129
[13] 张建山, 林兵, 卢宇, 许芙蓉.
基于无线城域网的微云部署及用户任务调度
Cloudlet Placement and User Task Scheduling Based on Wireless Metropolitan Area Networks
计算机科学, 2019, 46(6): 128-134. https://doi.org/10.11896/j.issn.1002-137X.2019.06.019
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!