计算机科学 ›› 2023, Vol. 50 ›› Issue (5): 137-145.doi: 10.11896/jsjkx.220500268

• 数据库&大数据&数据科学 • 上一篇    下一篇

代价敏感的多粒度邻域粗糙模糊集的近似表示

杨洁1,2, 匡俊成1, 王国胤1, 刘群1   

  1. 1 重庆邮电大学计算智能实验室 重庆 400065
    2 遵义师范学院物理与电子科学学院 贵州 遵义 563002
  • 收稿日期:2022-05-30 修回日期:2022-09-28 出版日期:2023-05-15 发布日期:2023-05-06
  • 通讯作者: 杨洁(yj530966074@foxmail.com)
  • 基金资助:
    国家自然科学基金(62066049,62006099,62164014);贵州省科技计划项目(黔科合基础-ZK[2021]一般332);贵州省优秀青年科技人才项目(黔科合平台人才[2021]5627号);重庆市自然科学基金(cstc2021ycjh-bgzxm0013);重庆市教委重点合作项目(HZ2021008)

Cost-sensitive Multigranulation Approximation of Neighborhood Rough Fuzzy Sets

YANG Jie1,2, KUANG Juncheng1, WANG Guoyin1, LIU Qun1   

  1. 1 Chongqing Key Laboratory of Computational Intelligence,Chongqing University of Posts and Telecommunications,Chongqing 400065,China
    2 School of Physics and Electronic Science,Zunyi Normal University,Zunyi,Guizhou 563002,China
  • Received:2022-05-30 Revised:2022-09-28 Online:2023-05-15 Published:2023-05-06
  • About author:YANG Jie,born in 1987,Ph.D,professor.His main research interests include granular computing,data mining,machine learning and rough set.
  • Supported by:
    National Natural Science Foundation of China(62066049,62006099,62164014),National Science Foundation of Guizhou province(QKH-ZK [2021] General 332),Excellent Young Scientific and Technological Talents Foundation of Guizhou Province(QKH-platform talent [2021] 5627),National Science Foundation of Chongqing(cstc2021ycjh-bgzxm0013) and Key Cooperation Project of Chongqing Municipal Education Commission(HZ2021008).

摘要: 多粒度邻域粗糙集是邻域粗糙集理论的一种新型数据处理模式,其目标概念分别由乐观和悲观的上、下近似边界描述。但当前的多粒度邻域粗糙集既缺乏利用已有的信息粒近似描述目标概念的方法,又无法处理目标概念为模糊的情形。而张清华教授提出的粗糙集近似理论提供了一种利用已有信息粒近似描述知识的方法,为构建多粒度邻域粗糙模糊集的近似精确集提供了新思路。文中首先针对模糊目标概念,将粗糙集近似理论应用到邻域粗糙集领域,提出了代价敏感的邻域粗糙模糊集的近似表示模型;然后进一步从多粒度视角,构建出一种代价敏感的邻域粗糙模糊集的多粒度近似表示模型,并分析了其相关性质;最后,通过实验仿真,验证了当多粒度代价敏感近似及其上、下近似方法分别去近似刻画模糊目标概念时,多粒度代价敏感近似方法产生的误分类代价最小。

关键词: 粗糙集, 邻域粗糙模糊集, 近似模型, 代价敏感, 多粒度

Abstract: Multigranulation neighborhood rough sets are a new data processing mode in the theory of neighborhood rough sets,in which the target concept can be characterized by upper/lower approximate boundaries of optimistic and pessimistic,respectively.Nevertheless,the current multigranulation neighborhood rough sets not only lacks the method of using the existing information granules to describe the target concept approximately,but also can not deal with the situation that the target concept is fuzzy Whereas the approximation theory of rough sets proposed by professor Zhang provides a method for approximately describing knowledge utilizing existing information granules,therefore,it provides a new method for constructing approximate and accurate sets of multigranulation neighborhood rough fuzzy sets.In this paper,aiming to process the fuzzy target concept,the approximation theory of rough sets is applied to the field of neighborhood rough sets,and a cost-sensitive approximate representation model of neighborhood rough fuzzy sets is introduced.Then,from the perspective of multigranulation,a multigranulation approximate representation model of the cost-sensitive neighborhood rough fuzzy sets is constructed with evaluating its related properties.Finally,simulation results show that when the multigranulation cost-sensitive approximation and upper/lower approximation are used to approximate the fuzzy target concept,the multigranulation cost-sensitive approximation method reaches the least misclassification cost.

Key words: Rough sets, Neighborhood rough fuzzy sets, Approximation model, Cost-sensitive, Multigranulation

中图分类号: 

  • TP18
[1]WANG G Y,YANG J,XU J.Granular computing:from granularity optimization to multi-granularity joint problem solving[J].Granular Computing,2017,2(3):105-120.
[2]ZADEH L A.Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J].Fuzzy Set and Systems,1997,90(2):111-127.
[3]SONG M L,WANG Y B.A study of granular computing in the agenda of growth of artificial neural networks[J].Granular Computing,2016,1:247-257.
[4]YAO Y Y.Three-way decision and granular computing[J].International Journal of Approximate Reasoning,2018,103:107-123.
[5]QI J J,WEI,WAN Q.Multi-level granularity in formal concept analysis[J].Granular Computing,2019,4:351-362.
[6]ZADEH L A.Fuzzy set[J].Information and Control,1965,8(3):338-353.
[7]PAWLAK Z.Rough set[J].International Journal of Computer and Information Sciences,1982,11(5):341-356.
[8]ZHANG L,ZHANG B.The quotient space theory of problemsolving[C]//International Workshop on Rough Set,Fuzzy Set,Data Mining,and Granular Soft Computing.2003:11-15.
[9]LI D Y,MENG H J,SHI X M.Membership clouds and membership cloud generators[J].Journal of Computer Research and Development,1995,32(6):15-20.
[10]LI J H,WANG F,WU W Z,et al.Review of Multi-granularity Data Analysis Methods Based on Granular Computing[J].Journal of Data Acquisition and Processing,2021,36(3):418-435.
[11]QIAN Y H,LIANG J Y,DANG C Y.Incomplete multigranulation rough set[J].IEEE transactions on Systems,Man,and Cybernetics-part A:Systems and Humans,2009,40(2):420-431.
[12]LIN G P,QIAN Y H,LI J J.Nmgrs:Neighborhood-based multigranulation rough set[J].International Journal of Approximate Reasoning,2012,53(7):1080-1093.
[13]SUN L,WANG L,DING W,et al.Feature Selection UsingFuzzy Neighborhood Entropy-Based Uncertainty Measures for Fuzzy Neighborhood Multigranulation Rough Set[J].IEEE Transactions on Fuzzy Systems,2021,29(1):19-33.
[14]GUO Y,TSANG E C C,HU M.Local Weighted Generalized Multigranulation Neighborhood Rough Set[C]//2021 International Conference on Wavelet Analysis and Pattern Recognition(ICWAPR).2021:1-7.
[15]YANG J,HUANG M Y,CHEN J.Neighborhood-based multi-granulation rough fuzzy set and their uncertainty measure[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2020,32(5):898-908.
[16]ZHANG Q H,WANG G Y,YU X.Approximation set of rough set[J].Journal of Software,2012,23(7):1745-1759.
[17]ZHANG Q H,WANG J,WANG G Y.The approximate representation of rough-fuzzy set[J].Chinese Journal of Computers.Jisuanji Xuebao,2015,38(7):1484-1496.
[18]ZHANG Q H,WANG J,WANG G Y.The approximation set of a vague set in rough approximation space[J].Information Sciences,2015(300):1-19.
[19]ZHANG Q H,YANG J J,YAO L Y.Attribute reduction based on rough approximation set in algebra and information views[J].IEEE Access,2016(4):5399-5407.
[20]YAO L Y,ZHANG Q H,HU S P,et al.Rough entropy forimage segmentation based on approximation set and particle swarm optimization[J].Journal of Frontiers of Computer Science and Technology,2016,10(5):699-708.
[21]YAO Y Y.Tri-level thinking:models of three-way decision[J].International Journal of Machine Learning and Cybernetics,2020,11(5):947-959.
[22]HU Q H,YU D,LIU J H,et al.Neighborhood rough set based heterogeneous feature subset selection[J].Information Sciences,2008,178(18):3577-3594.
[23]DUBOIS D,PRADE H.Rough fuzzy set and fuzzy rough set[J].International Journal of General System,1990,17(2/3):191-209.
[1] 张虎, 张广军.
基于多粒度实体异构图的篇章级事件抽取方法
Document-level Event Extraction Based on Multi-granularity Entity Heterogeneous Graph
计算机科学, 2023, 50(5): 255-261. https://doi.org/10.11896/jsjkx.220300154
[2] 刘松岳, 王欢.
基于多粒度特征融合的叶片分类与分级方法
Leaf Classification and Ranking Method Based on Multi-granularity Feature Fusion
计算机科学, 2023, 50(3): 216-222. https://doi.org/10.11896/jsjkx.211100203
[3] 秦琪琦, 张月琴, 王润泽, 张泽华.
基于知识图谱的层次粒化推荐方法
Hierarchical Granulation Recommendation Method Based on Knowledge Graph
计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111
[4] 程富豪, 徐泰华, 陈建军, 宋晶晶, 杨习贝.
基于顶点粒k步搜索和粗糙集的强连通分量挖掘算法
Strongly Connected Components Mining Algorithm Based on k-step Search of Vertex Granule and Rough Set Theory
计算机科学, 2022, 49(8): 97-107. https://doi.org/10.11896/jsjkx.210700202
[5] 张源, 康乐, 宫朝辉, 张志鸿.
基于Bi-LSTM的期货市场关联交易行为检测方法
Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM
计算机科学, 2022, 49(7): 31-39. https://doi.org/10.11896/jsjkx.210400304
[6] 许思雨, 秦克云.
基于剩余格的模糊粗糙集的拓扑性质
Topological Properties of Fuzzy Rough Sets Based on Residuated Lattices
计算机科学, 2022, 49(6A): 140-143. https://doi.org/10.11896/jsjkx.210200123
[7] 方连花, 林玉梅, 吴伟志.
随机多尺度序决策系统的最优尺度选择
Optimal Scale Selection in Random Multi-scale Ordered Decision Systems
计算机科学, 2022, 49(6): 172-179. https://doi.org/10.11896/jsjkx.220200067
[8] 杨斐斐, 沈思妤, 申德荣, 聂铁铮, 寇月.
面向数据融合的多粒度数据溯源方法
Method on Multi-granularity Data Provenance for Data Fusion
计算机科学, 2022, 49(5): 120-128. https://doi.org/10.11896/jsjkx.210300092
[9] 李京泰, 王晓丹.
基于代价敏感激活函数XGBoost的不平衡数据分类方法
XGBoost for Imbalanced Data Based on Cost-sensitive Activation Function
计算机科学, 2022, 49(5): 135-143. https://doi.org/10.11896/jsjkx.210400064
[10] 陈于思, 艾志华, 张清华.
基于三角不等式判定和局部策略的高效邻域覆盖模型
Efficient Neighborhood Covering Model Based on Triangle Inequality Checkand Local Strategy
计算机科学, 2022, 49(5): 152-158. https://doi.org/10.11896/jsjkx.210300302
[11] 孙林, 黄苗苗, 徐久成.
基于邻域粗糙集和Relief的弱标记特征选择方法
Weak Label Feature Selection Method Based on Neighborhood Rough Sets and Relief
计算机科学, 2022, 49(4): 152-160. https://doi.org/10.11896/jsjkx.210300094
[12] 王子茵, 李磊军, 米据生, 李美争, 解滨.
基于误分代价的变精度模糊粗糙集属性约简
Attribute Reduction of Variable Precision Fuzzy Rough Set Based on Misclassification Cost
计算机科学, 2022, 49(4): 161-167. https://doi.org/10.11896/jsjkx.210500211
[13] 王志成, 高灿, 邢金明.
一种基于正域的三支近似约简
Three-way Approximate Reduction Based on Positive Region
计算机科学, 2022, 49(4): 168-173. https://doi.org/10.11896/jsjkx.210500067
[14] 薛占熬, 侯昊东, 孙冰心, 姚守倩.
带标记的不完备双论域模糊概率粗糙集中近似集动态更新方法
Label-based Approach for Dynamic Updating Approximations in Incomplete Fuzzy Probabilistic Rough Sets over Two Universes
计算机科学, 2022, 49(3): 255-262. https://doi.org/10.11896/jsjkx.201200042
[15] 迟宇宁, 郭云飞, 王亚文, 扈红超.
一种基于多粒度特征的软件多样性评估方法
Software Diversity Evaluation Method Based on Multi-granularity Features
计算机科学, 2022, 49(12): 118-124. https://doi.org/10.11896/jsjkx.211200029
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!