计算机科学 ›› 2022, Vol. 49 ›› Issue (8): 64-69.doi: 10.11896/jsjkx.210600111

• 数据库&大数据&数据科学* 上一篇    下一篇

基于知识图谱的层次粒化推荐方法

秦琪琦, 张月琴, 王润泽, 张泽华   

  1. 太原理工大学信息与计算机学院 太原 030024
  • 收稿日期:2021-04-06 修回日期:2021-06-13 发布日期:2022-08-02
  • 通讯作者: 张月琴(zehua_zhang@163.com)
  • 作者简介:(qinqiqi_q@163.com)
  • 基金资助:
    国家自然科学基金(61503273,61702356);教育部产学合作协同育人项目;山西省回国留学人员科研资助项目

Hierarchical Granulation Recommendation Method Based on Knowledge Graph

QIN Qi-qi, ZHANG Yue-qin, WANG Run-ze, ZHANG Ze-hua   

  1. College of Information and Computer,Taiyuan University of Technology,Taiyuan 030024,China
  • Received:2021-04-06 Revised:2021-06-13 Published:2022-08-02
  • About author:QIN Qi-qi,born in 1996,postgraduate.Her main research interests include recom-mendation system and so on.
    ZHANG Yue-qin,born in 1963,professor,master supervisor,is a member of China Computer Federation.Her main research interests include data mining,intelligent information processing and knowledge discovery on graph.
  • Supported by:
    National Natural Science Foundation of China(61503273,61702356),Industry-University Cooperation Education Program of the Ministry of Education and Shanxi Scholarship Council of China.

摘要: 基于图神经网络的推荐系统是当前数据挖掘应用的研究热点。在异质信息网络(Heterogeneous Information Network,HIN)上结合图神经网络进行推荐,可通过用户的关联信息来学习用户的偏好,从而提升推荐性能。但现有基于HIN的推荐方法大多存在不能有效地解释高阶建模结果及人工设计元路径需要相关领域知识的问题。因此,结合层次粒化思想,在异质推荐过程中引入知识图谱,提出一种基于知识图谱的异质推荐方法(Heterogeneous Recommendation Methods for Knowledge Graphs,HKR)。该方法首先结合知识图谱,对局部上下文和非局部上下文进行层次粒化,分别学习用户特征的粗粒度表示;然后基于门控机制结合局部和非局部的属性节点嵌入,进一步学习用户和项目之间的潜在特征;最后将细粒度的特征融合用于推荐。在真实的大规模数据集上的实验结果表明,所提方法的性能在多方面评测上均优于目前的基于知识图谱的图神经网络推荐方法。

关键词: 层次粒化, 多粒度融合, 推荐系统, 知识图谱

Abstract: The recommendation system based on graph neural network is the current research hotspot of data mining applications.The recommendation performance can be improved by combining the graph neural network on the heterogeneous information network(HIN).However,the existing HIN-based recommendation methods often have problems that cannot effectively explain the results of high-level modeling,and manual design of meta-paths requires knowledge of related domains.Therefore,this paper combines the idea of hierarchical granulation andproposes a heterogeneous recommendation method(HKR) based on knowledge graphs.The local context and non-local context are hierarchically granulated,and the coarse-grained representation of user characteristics is learned separately.Then based on the gating mechanism, combining local and non-local attribute node embedding,learning the potential features between users and items,and finally fusing fine-grained features for recommendation.The real experimental results show that the performance of the proposed method is better than the current graph neural network recommendation method based on knowledge graph in many aspects.

Key words: Hierarchical granulation, Knowledge graph, Multi-granularity fusion, Recommendation system

中图分类号: 

  • TP391
[1]FOGELMAN-SOULIE F,MEI L,J ZHANG J,et al.Recommender Systems and Attributed Networks[M].John Wiley & Sons,Ltd,2020:4.
[2]YU X,REN X,SUN Y Z,et al.Personalized entity recommendation:A heterogeneous information network approach[C]//WSDM.2014:283-292.
[3]ZHAO H,YAO Q M,LI J D,et al.Metagraph-based recommendation fusion over heterogeneous information networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017.
[4]AI Q Y,AZIZI V,CHEN X,et al.Learning HeterogeneousKnowledge Base Embeddings for Explainable Recommendation[J].Algorithms,2018,11(9):137.
[5]CAO Y X,WANG X,HE X N,et al.Unifying Knowledge Graph Learning and Recommendation:Towards a Better Understan-ding of User Preferences[C]//WWW’19.ACM,2019:151-161.
[6]SUN Z,GUO Q,YANG J,et al.Research commentary on reco-mmendations with side information:A survey and research directions[J].Electronic Commerce Research and Applications,2019,37:100879.
[7]WANG X,WANG D X,XU C R,et al.Explainable Reasoningover Knowledge Graphs for Recommendation[C]//AAAI.2019.
[8]HU B B,SHI C,ZHAO W X,et al.Leveraging Meta-path-based Context for Top-N Recommendation with A Neural Co-Attention Model[C]//SIGKDD.2018:1531-1540.
[9]YU X,REN X,GU Q Q,et al.Collaborative filtering with entity similarity regularization in heterogeneous information networks[C]//IJCAI 27.2013.
[10]LIU Q,LI Y,DUAN H,et al.Knowledge graph construction techniques[J]. Journal of Computer Research and Development,2016,53(3):582-600.
[11]DODWAD P R,LOBO L.A context-aware recommender system using ontology based approach for travel applications[J].International Journal of Advanced Engineering and Nano Techno-logy,2014,1(10):8-12.
[12]MORENO A,VALLS A,ISERN D,et al.SigTur/E-destination:Ontology based personalized recommendation of tourism and leisure activities[J].Engineering Applications of Artificial Intelligence,2013,26(1):633-651.
[13]DI NOIA T,MIRIZZI R,OSTUNI V C,et al.Linked open data to support content-based recommender systems[C]//Procee-dings of the 8th International Conference on Semantic Systems.Graz,Austria:ACM,2012.
[14]ZADAH L A.Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J].Fuzzy Sets and Systems,1997,90(2):111-127.
[15]YAO Y Y,NING Z.Potential Applications of Granular Computing in Knowledge Discovery and Data Mining[C]//Proceedings of World Multiconference on Systemics, Cybernetics and Informatics.1999:573-580.
[16]ZHANG B,ZHANG L.The Theory and Application of Problem Solving.[M].Beijing:Tsinghua University Press,1990.
[17]PEDRYCZ W.Granular Computing:An Emerging paradigm.Hardcover[M].Physica-Verlag,2001.
[18]MIAO D Q,WANG G Y,LIU Q,et al.Granular Computing:Past,Present and Prospects[M].Beijing:Science Press,2007.
[19]WU W Z,ZHANG W X.Neighborhood operator systems and approximations [J].Information Sciences,2002,114(1/2/3/4):201-217.
[20]QIAN Y,LIANG X,WANG Q.et al.Local rough set:a solution to rough data analysis in big data[J].International Journal of Approximate Reasoning,2018,97:38-63.
[21]ZHANG F Z,YUAN N J,LIAN D,et al.Collaborative Know-ledge Base Embedding for Recommender Systems[C]//KDD’16.ACM,2016:353-362.
[22]LIN Y K,LIU Z Y,SUN M S,et al.Learning entity and relation embeddings for knowledge graph completion[C]//AAAI.2015:2181-2187.
[23]WANG H W,ZHANG F Z,WANG J L,et al.RippleNet:Propagating User Preferences on the Knowledge Graph for Recommender Systems[C]//CIKM.2018:417-426.
[24]WANG H W,ZHANG F Z,ZHAO M,et al.Multi-task feature learning for knowledge graph enhanced recommendation[C]//WWW’19.ACM,2019:2000-2010.
[25]KIPF T N,WELLING M.Semi-Supervised Classification with Graph Convolutional Networks[C]//ICLR’17.2017.
[26]VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph Attention Networks[C]//ICLR.2018.
[27]HAMILTON W L,YING R,LESKOVEC J.Inductive Representation Learning on Large Graphs[J].arXiv:1706.02216,2017.
[28]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[C]//NeurIPS.2013:2787-2795.
[29]WANG H W,ZHANG F Z,ZHANG M D,et al.Knowledge graph convolutional networks for recommender systems with label smoothness regularization[C]//KDD’19.2019.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 吴子仪, 李邵梅, 姜梦函, 张建朋.
基于自注意力模型的本体对齐方法
Ontology Alignment Method Based on Self-attention
计算机科学, 2022, 49(9): 215-220. https://doi.org/10.11896/jsjkx.210700190
[3] 孔世明, 冯永, 张嘉云.
融合知识图谱的多层次传承影响力计算与泛化研究
Multi-level Inheritance Influence Calculation and Generalization Based on Knowledge Graph
计算机科学, 2022, 49(9): 221-227. https://doi.org/10.11896/jsjkx.210700144
[4] 程章桃, 钟婷, 张晟铭, 周帆.
基于图学习的推荐系统研究综述
Survey of Recommender Systems Based on Graph Learning
计算机科学, 2022, 49(9): 1-13. https://doi.org/10.11896/jsjkx.210900072
[5] 王冠宇, 钟婷, 冯宇, 周帆.
基于矢量量化编码的协同过滤推荐方法
Collaborative Filtering Recommendation Method Based on Vector Quantization Coding
计算机科学, 2022, 49(9): 48-54. https://doi.org/10.11896/jsjkx.210700109
[6] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[7] 方义秋, 张震坤, 葛君伟.
基于自注意力机制和迁移学习的跨领域推荐算法
Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning
计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011
[8] 王杰, 李晓楠, 李冠宇.
基于自适应注意力机制的知识图谱补全算法
Adaptive Attention-based Knowledge Graph Completion
计算机科学, 2022, 49(7): 204-211. https://doi.org/10.11896/jsjkx.210400129
[9] 帅剑波, 王金策, 黄飞虎, 彭舰.
基于神经架构搜索的点击率预测模型
Click-Through Rate Prediction Model Based on Neural Architecture Search
计算机科学, 2022, 49(7): 10-17. https://doi.org/10.11896/jsjkx.210600009
[10] 齐秀秀, 王佳昊, 李文雄, 周帆.
基于概率元学习的矩阵补全预测融合算法
Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning
计算机科学, 2022, 49(7): 18-24. https://doi.org/10.11896/jsjkx.210600126
[11] 蔡晓娟, 谭文安.
一种改进的融合相似度和信任度的协同过滤算法
Improved Collaborative Filtering Algorithm Combining Similarity and Trust
计算机科学, 2022, 49(6A): 238-241. https://doi.org/10.11896/jsjkx.210400088
[12] 何亦琛, 毛宜军, 谢贤芬, 古万荣.
基于点割集图分割的矩阵变换与分解的推荐算法
Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation
计算机科学, 2022, 49(6A): 272-279. https://doi.org/10.11896/jsjkx.210600159
[13] 马瑞新, 李泽阳, 陈志奎, 赵亮.
知识图谱推理研究综述
Review of Reasoning on Knowledge Graph
计算机科学, 2022, 49(6A): 74-85. https://doi.org/10.11896/jsjkx.210100122
[14] 邓凯, 杨频, 李益洲, 杨星, 曾凡瑞, 张振毓.
一种可快速迁移的领域知识图谱构建方法
Fast and Transmissible Domain Knowledge Graph Construction Method
计算机科学, 2022, 49(6A): 100-108. https://doi.org/10.11896/jsjkx.210900018
[15] 杜晓明, 袁清波, 杨帆, 姚奕, 蒋祥.
军事指控保障领域命名实体识别语料库的构建
Construction of Named Entity Recognition Corpus in Field of Military Command and Control Support
计算机科学, 2022, 49(6A): 133-139. https://doi.org/10.11896/jsjkx.210400132
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!