计算机科学 ›› 2022, Vol. 49 ›› Issue (12): 250-256.doi: 10.11896/jsjkx.220600008

• 计算机图形学&多媒体 • 上一篇    下一篇

基于域自适应的肿瘤识别模型

田天祎, 孙福明   

  1. 大连民族大学信息与通信工程学院 辽宁 大连116600
  • 收稿日期:2021-06-01 修回日期:2022-08-19 发布日期:2022-12-14
  • 通讯作者: 孙福明(sunfuming@dlnu.edu.cn)
  • 作者简介:(499415709@qq.com)
  • 基金资助:
    国家自然科学基金(61976042)

Tumor Recognition Method Based on Domain Adaptive Algorithm

TIAN Tian-yi, SUN Fu-ming   

  1. School of Information and Communication Engineering,Dalian Minzu University, Dalian,Liaoning 116600,China
  • Received:2021-06-01 Revised:2022-08-19 Published:2022-12-14
  • About author:TIAN Tian-yi,born in 1996,postgra-duate.Her main research interests include transfer learning and machine learning.SUN Fu-ming,born in 1972,Ph.D,professor,Ph.D supervisor,is a member of China Computer Federation.His main research interests include content-based image retrieval,image content analysis and pattern recognition.
  • Supported by:
    National Natural Science Foundation of China(61976042).

摘要: 关注人的生命健康,定期进行癌症筛查是一项极为重要的工作。针对肿瘤图像数据集数量较少且存在部分无标签的问题,提出了一种基于域自适应算法的肿瘤识别模型。其主干网络包括特征提取器、标签分类器和域判别器。其中,特征提取器对源域和目标域的特征进行提取,学习肿瘤特征;标签分类器对肿瘤图像进行分类输出;域判别器对数据特征的来源进行判定。标签分类器与域判别器博弈,获取源域和目标域的数据分布,直到二者在特征空间上的分布趋于一致,此时得到的分类器可对目标域的数据进行分类。在BreakHis数据集上的实验结果表明,所提算法的平均准确率达到了87.6%,与两种经典域自适应方法相比,其准确率分别提高了16.2%和14.1%,并且在无标签的数据集上显示出了良好的性能。

关键词: 域自适应, 肿瘤识别, 特征, 标签, 图像分类

Abstract: It is extremely important to focus on human life and health and to conduct regular cancer screening.A tumor recognition model based on domain adaptive algorithm is proposed to solve the problem of small number of tumor image data sets and some unlabeled ones.The structure of the backbone network is divided into three networks,feature extractor,domain discriminator and label classifier.The feature extractor extracts the features of source domain and target domain to learn tumor features.Label classifier is used to classify and output tumor images.The domain discriminator determines the source of data features.The label classifier plays a game with the domain discriminator to obtain the data distribution of the source domain and the target domain until the distribution of the source domain and the target domain tends to be consistent in the feature space.Then the classifier can classify the data of the target domain.Experimental results on BreakHis data set show that the average accuracy of the proposed model reaches 87.6%,which improves by 16.2% and 14.1% respectively compared with the two classical domain adaptive methods.The proposed method shows a good performance in the classification of unlabeled data sets.

Key words: Domain adaptation, Tumor recognition, Characteristics, Labels, Image classification

中图分类号: 

  • TP391
[1]ZHENG G Y,LIU X B,HAN G H.Review of computer-aided detection and diagnosis systems for medical imaging[J].Joural of Software,2018,29(5):1471-1514.
[2]SPANHOL F A,OLIVEIRA L S,PETITJEAN C,et al.Breast cancer histopathological image classification using convolutional neural networks[C]//International Joint Conference on Neural Networks.2016:2560-2567.
[3]BAYRAMOGLU N,KANNALA J,HEIKKILÄ J.Deep lear-ning for magnification independent breast cancer histopathology image classification[C]//International Conference on Pattern Recognition.2016:2440-2445.
[4]FARAHANI A,VOGHOEI S,RASHEED K,et al.A Brief Review of Domain Adaptation [J].arXiv:2010.03978,2020.
[5]LONG M S.Transfer Learning Problems and Methods [D].Beijing:Tsinghua University,2014.
[6]LONG M S,ZHU H,WANG J,et al.Deep Transfer Learning with Joint Adaptation Networks [C]//International Conference on Machine Learning.2017:2208-2217.
[7]ZHANG Y,LIU T,LONG M,et al.Bridging Theory and Algorithm for Domain Adaptation[C]//International Conference on Machine Learning.2019:7404-7413.
[8]TZENG E,HOFFMAN J,ZHANG N,et al.Deep Domain Confusion:Maximizing for Domain Invariance[J].arXiv:1412.3474,2014.
[9]LONG M,CAO Y,WANG J,et al.Learning Transferable Features with Deep Adaptation Networks [C]//International Conference on Machine Learning.2015:97-105.
[10]ZHUO J,WANG S,ZHANG W,et al.Deep Unsupervised Convolutional Domain Adaptation[C]//Proceedings of the 25th ACM International Conference on Multimedia.2017:261-269.
[11]GHIFARY M,KLEIJN W B,ZHANG M,et al.Domain Gene-ralization for Object Recognition with Multi-task Autoencoders[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:2551-2559.
[12]BOUSMALIS K,SILBERMAN N,DOHAN D,et al.Unsupervised Pixel-Level Domain Adaptation With Generative Adversarial Networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:3722-3731.
[13]HOFFMAN J,TZENG E,PARK T,et al.Cycada:Cycle-consistent adversarial domain adaptation[C]//International Confe-rence on Machine Learning.2018:1989-1998.
[14]ZHU J Y,PARK T,ISOLA P,et al.Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2223-2232.
[15]YUE X,ZHENG W,ZHANG S,et al.Prototypical cross-domain self-supervised learning for few-shot unsupervised domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13834-13844.
[16]GUAN H,LIU M.Domain Adaptation for Medical Image Ana-lysis:A Survey [J].IEEE Transactions on Biomedical Enginee-ring,2022,69(3):1173-1185.
[17]ZHANG Y,TANG H,JIA H,et al.Domain-Symmetric Net-works for Adversarial Domain Adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:5031-5040.
[1] 郑文萍, 刘美麟, 杨贵.
一种基于节点稳定性和邻域相似性的社区发现算法
Community Detection Algorithm Based on Node Stability and Neighbor Similarity
计算机科学, 2022, 49(9): 83-91. https://doi.org/10.11896/jsjkx.220400146
[2] 胡安祥, 尹小康, 朱肖雅, 刘胜利.
基于数据流特征的比较类函数识别方法
Strcmp-like Function Identification Method Based on Data Flow Feature Matching
计算机科学, 2022, 49(9): 326-332. https://doi.org/10.11896/jsjkx.220200163
[3] 武红鑫, 韩萌, 陈志强, 张喜龙, 李慕航.
监督和半监督学习下的多标签分类综述
Survey of Multi-label Classification Based on Supervised and Semi-supervised Learning
计算机科学, 2022, 49(8): 12-25. https://doi.org/10.11896/jsjkx.210700111
[4] 李斌, 万源.
基于相似度矩阵学习和矩阵校正的无监督多视角特征选择
Unsupervised Multi-view Feature Selection Based on Similarity Matrix Learning and Matrix Alignment
计算机科学, 2022, 49(8): 86-96. https://doi.org/10.11896/jsjkx.210700124
[5] 陈晶, 吴玲玲.
多源异构环境下的车联网大数据混合属性特征检测方法
Mixed Attribute Feature Detection Method of Internet of Vehicles Big Datain Multi-source Heterogeneous Environment
计算机科学, 2022, 49(8): 108-112. https://doi.org/10.11896/jsjkx.220300273
[6] 刘冬梅, 徐洋, 吴泽彬, 刘倩, 宋斌, 韦志辉.
基于边框距离度量的增量目标检测方法
Incremental Object Detection Method Based on Border Distance Measurement
计算机科学, 2022, 49(8): 136-142. https://doi.org/10.11896/jsjkx.220100132
[7] 李瑶, 李涛, 李埼钒, 梁家瑞, Ibegbu Nnamdi JULIAN, 陈俊杰, 郭浩.
基于多尺度的稀疏脑功能超网络构建及多特征融合分类研究
Construction and Multi-feature Fusion Classification Research Based on Multi-scale Sparse Brain Functional Hyper-network
计算机科学, 2022, 49(8): 257-266. https://doi.org/10.11896/jsjkx.210600094
[8] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[9] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[10] 帅剑波, 王金策, 黄飞虎, 彭舰.
基于神经架构搜索的点击率预测模型
Click-Through Rate Prediction Model Based on Neural Architecture Search
计算机科学, 2022, 49(7): 10-17. https://doi.org/10.11896/jsjkx.210600009
[11] 张源, 康乐, 宫朝辉, 张志鸿.
基于Bi-LSTM的期货市场关联交易行为检测方法
Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM
计算机科学, 2022, 49(7): 31-39. https://doi.org/10.11896/jsjkx.210400304
[12] 高振卓, 王志海, 刘海洋.
嵌入典型时间序列特征的随机Shapelet森林算法
Random Shapelet Forest Algorithm Embedded with Canonical Time Series Features
计算机科学, 2022, 49(7): 40-49. https://doi.org/10.11896/jsjkx.210700226
[13] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[14] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[15] 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨.
基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨
Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism
计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!