计算机科学 ›› 2022, Vol. 49 ›› Issue (7): 10-17.doi: 10.11896/jsjkx.210600009
帅剑波, 王金策, 黄飞虎, 彭舰
SHUAI Jian-bo, WANG Jin-ce, HUANG Fei-hu, PENG Jian
摘要: 点击率(Click-Through Rate,CTR)预测是推荐系统中一项重要的任务,其目标是预测用户点击一个广告或者商品的概率。特征嵌入和特征组合是影响预测性能的关键,因此很多点击率预测模型的思路也是针对这两个方面进行优化。但目前大部分工作仅关注其中一个方面,并且几乎所有的模型在进行特征组合时都没有对特征进行区分,同一个特征与其他特征组合时都使用相同的嵌入和组合方法,阻碍了模型性能的提升。为解决该问题,提出了Auto-SEI(Automatic Super-field-aware Feature Embedding and Interacting)模型。该模型先将每个特征子域分配给一个特征超域,再根据分组得到特征的嵌入,然后为特征对选择合适的组合方法获取组合特征,最后进行预测。Auto-SEI模型中,特征子域的划分和组合方法的选择被参数化为架构搜索问题,利用神经架构搜索(Neural Architecture Search,NAS)算法压缩搜索空间并进行选择。在3个真实的大规模数据集上进行了大量实验,结果表明Auto-SEI 模型在点击率预测任务上具有优秀的性能。
中图分类号:
[1]GUO H,TANG R,YE Y,et al.DeepFM:a factorization-ma-chine based neural network for CTR prediction[C]//Procee-dings of the 26th International Joint Conference on Artificial Intelligence.2017:1725-1731. [2]CHEN W,ZHAN L,CI Y,et al.FLEN:Leveraging Field for Scalable CTR Prediction[J].arXiv:1911.04690,2019. [3]SONG W,SHI C,XIAO Z,et al.Autoint:Automatic feature interaction learning via self-attentive neural networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.2019:1161-1170. [4]WANG R,FU B,FU G,et al.Deep & cross network for ad click predictions [C]//Proceedings of the ADKDD'17.2017:1-7. [5]LIAN J,ZHOU X,ZHANG F,et al.xdeepfm:Combining expli-cit and implicit feature interactions for recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Confe-rence on Knowledge Discovery & Data Mining.2018:1754-1763. [6]PAN J,XU J,RUIZ A L,et al.Field-weighted factorization machines for click-through rate prediction in display advertising[C]//Proceedings of the 2018 World Wide Web Conference.2018:1349-1357. [7]HUANG F,QIAO S,PENG J,et al.STPR:A personalized next point-of-interest recommendation model with spatio-temporal effects based on purpose ranking[J].IEEE Transactions on Emerging Topics in Computing,2019,9(2):994-1005. [8]RENDLE S.Factorization machines[C]//2010 IEEE Interna-tional Conference on Data Mining.IEEE,2010:995-1000. [9]JUAN Y,ZHUANG Y,CHIN W S,et al.Field-aware factorization machines for CTR prediction[C]//Proceedings of the 10th ACM Conference on Recommender Systems.2016:43-50. [10]WANG X,HE X,WANG M,et al.Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174. [11]QU Y,FANG B,ZHANG W,et al.Product-based neural networks for user response prediction over multi-field categorical data[J].ACM Transactions on Information Systems(TOIS),2018,37(1):1-35. [12]YAO Q,CHEN X,KWOK J T,et al.Efficient neural interaction function search for collaborative filtering[C]//Proceedings of The Web Conference 2020.2020:1660-1670. [13]LIU B,XUE N,GUO H,et al.AutoGroup:Automatic feature grouping for modelling explicit high-order feature interactions in CTR prediction[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:199-208. [14]LIU B,ZHU C,LI G,et al.Autofis:Automatic feature interaction selection in factorization models for click-through rate prediction[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:2636-2645. [15]LUO Y,WANG M,ZHOU H,et al.Autocross:Automatic feature crossing for tabular data in real-world applications[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:1936-1945. [16]LIU W,TANG R,LI J,et al.Field-aware probabilistic embedding neural network for ctr prediction[C]//Proceedings of the 12th ACM Conference on Recommender Systems.2018:412-416. [17]XIAO J,YE H,HE X,et al.Attentional factorization machines:Learning the weight of feature interactions via attention networks[J].arXiv:1708.04617,2017. [18]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010. [19]LIU B,TANG R,CHEN Y,et al.Feature generation by convolutional neural network for click-through rate prediction[C]//The World Wide Web Conference.2019:1119-1129. [20]CHENG H T,KOC L,HARMSEN J,et al.Wide & deep lear-ning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.2016:7-10. [21]HE X,CHUA T S.Neural factorization machines for sparsepredictive analytics[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.2017:355-364. [22]YANG Y,XU B,SHEN S,et al.Operation-aware Neural Networks for user response prediction[J].Neural Networks,2020,121:161-168. [23]SONG Q,CHENG D,ZHOU H,et al.Towards automated neural interaction discovery for click-through rate prediction[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:945-955. [24]YAO Q,XU J,TU W W,et al.Efficient neural architecture search via proximal iterations[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:6664-6671. [25]LIU H,SIMONYAN K,YANG Y.Darts:Differentiable architecture search[J].arXiv:1806.09055,2018. [26]XIE S,ZHENG H,LIU C,et al.SNAS:stochastic neural architecture search[J].arXiv:1812.09926,2018. |
[1] | 程章桃, 钟婷, 张晟铭, 周帆. 基于图学习的推荐系统研究综述 Survey of Recommender Systems Based on Graph Learning 计算机科学, 2022, 49(9): 1-13. https://doi.org/10.11896/jsjkx.210900072 |
[2] | 王冠宇, 钟婷, 冯宇, 周帆. 基于矢量量化编码的协同过滤推荐方法 Collaborative Filtering Recommendation Method Based on Vector Quantization Coding 计算机科学, 2022, 49(9): 48-54. https://doi.org/10.11896/jsjkx.210700109 |
[3] | 秦琪琦, 张月琴, 王润泽, 张泽华. 基于知识图谱的层次粒化推荐方法 Hierarchical Granulation Recommendation Method Based on Knowledge Graph 计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111 |
[4] | 方义秋, 张震坤, 葛君伟. 基于自注意力机制和迁移学习的跨领域推荐算法 Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning 计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011 |
[5] | 齐秀秀, 王佳昊, 李文雄, 周帆. 基于概率元学习的矩阵补全预测融合算法 Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning 计算机科学, 2022, 49(7): 18-24. https://doi.org/10.11896/jsjkx.210600126 |
[6] | 蔡晓娟, 谭文安. 一种改进的融合相似度和信任度的协同过滤算法 Improved Collaborative Filtering Algorithm Combining Similarity and Trust 计算机科学, 2022, 49(6A): 238-241. https://doi.org/10.11896/jsjkx.210400088 |
[7] | 何亦琛, 毛宜军, 谢贤芬, 古万荣. 基于点割集图分割的矩阵变换与分解的推荐算法 Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation 计算机科学, 2022, 49(6A): 272-279. https://doi.org/10.11896/jsjkx.210600159 |
[8] | 洪志理, 赖俊, 曹雷, 陈希亮, 徐志雄. 基于遗憾探索的竞争网络强化学习智能推荐方法研究 Study on Intelligent Recommendation Method of Dueling Network Reinforcement Learning Based on Regret Exploration 计算机科学, 2022, 49(6): 149-157. https://doi.org/10.11896/jsjkx.210600226 |
[9] | 郭亮, 杨兴耀, 于炯, 韩晨, 黄仲浩. 基于注意力机制和门控网络相结合的混合推荐系统 Hybrid Recommender System Based on Attention Mechanisms and Gating Network 计算机科学, 2022, 49(6): 158-164. https://doi.org/10.11896/jsjkx.210500013 |
[10] | 熊中敏, 舒贵文, 郭怀宇. 融合用户偏好的图神经网络推荐模型 Graph Neural Network Recommendation Model Integrating User Preferences 计算机科学, 2022, 49(6): 165-171. https://doi.org/10.11896/jsjkx.210400276 |
[11] | 余皑欣, 冯秀芳, 孙静宇. 结合物品相似性的社交信任推荐算法 Social Trust Recommendation Algorithm Combining Item Similarity 计算机科学, 2022, 49(5): 144-151. https://doi.org/10.11896/jsjkx.210300217 |
[12] | 陈壮, 邹海涛, 郑尚, 于化龙, 高尚. 基于用户覆盖及评分差异的多样性推荐算法 Diversity Recommendation Algorithm Based on User Coverage and Rating Differences 计算机科学, 2022, 49(5): 159-164. https://doi.org/10.11896/jsjkx.210300263 |
[13] | 陈晋鹏, 胡哈蕾, 张帆, 曹源, 孙鹏飞. 融合时间特性和用户偏好的卷积序列化推荐 Convolutional Sequential Recommendation with Temporal Feature and User Preference 计算机科学, 2022, 49(1): 115-120. https://doi.org/10.11896/jsjkx.201200192 |
[14] | 詹皖江, 洪植林, 方路平, 吴哲夫, 吕跃华. 基于对抗性学习的协同过滤推荐算法 Collaborative Filtering Recommendation Algorithm Based on Adversarial Learning 计算机科学, 2021, 48(7): 172-177. https://doi.org/10.11896/jsjkx.200600077 |
[15] | 余笙, 李斌, 孙小兵, 薄莉莉, 周澄. 知识驱动的相似缺陷报告推荐方法 Approach for Knowledge-driven Similar Bug Report Recommendation 计算机科学, 2021, 48(5): 91-98. https://doi.org/10.11896/jsjkx.200600159 |
|