计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 220700024-4.doi: 10.11896/jsjkx.220700024

• 网络&通信 • 上一篇    下一篇

Pauli噪声环境下任意二粒子受控短距离隐形传态

向生建   

  1. 四川师范大学数学科学学院 成都 610066
  • 出版日期:2023-06-10 发布日期:2023-06-12
  • 通讯作者: 向生建(xsj.newmail@163.com)
  • 基金资助:
    四川省重点研发计划(2020YFG0290);成都市量子科技计划(2021-YF09-00116-GX)

Controlled Short-distance Quantum Teleportation for Arbitrary Two-particles State in Pauli Noise Environment

XIANG Shengjian   

  1. School of Mathematical Science,Sichuan Normal University,Chengdu 610066,China
  • Online:2023-06-10 Published:2023-06-12
  • About author:XIANG Shengjian,born in 1964,Ph.D,professor,is a member of China Computer Federation.His main reaserch interests include quantum communication and information technology.
  • Supported by:
    Key R&D Program of Sichuan Province(2020YFG0290) and Chengdu Science and Technology Plan(2021-YF09-00116-GX).

摘要: 量子隐形传态是量子通信中研究的热点之一。 有别于传统的隐形传态方案,短距离隐形传态通过加强两个参与者距离上的限制以进一步节约宝贵的量子纠缠资源。但这样的限制同时也增加了传输双方作弊的可能。为此,文中在现有短距离隐形传输研究的基础上加入第三方控制者,提高了传输过程的安全性。同时,由于粒子在传输过程中不可避免地会遭受信道噪声的影响,理想环境下的隐形传输是不可能的。保真度是刻画传输前后量子态相似性的工具,文中进一步分析了作为普遍使用的噪声信道模型即Pauli噪声信道对二粒子受控短距离隐形传输保真度的影响。最终得出,不同类型的Pauli噪声信道下,发送者所传输二粒子的纠缠程度不同保真度也不同。这为短距离隐形传输的实验研究以及量子网络发展提供了一些参考价值。

关键词: 量子隐形传态, 短距离, 控制者, 安全性, Pauli噪声, 保真度

Abstract: The quantum teleportation is one of the hot topics in the quantum communication.The short-distance teleportation,different from the traditional teleportation,can further save costly quantum entanglement resource based on the restriction in the distance.However,this also increases the probability in terms of cheating for the participants.Therefore,this paper proposes another short-distance quantum teleportation for arbitrary two-particles state scheme with a controller in order to enhance the safety.At the same time,it is impossible for quantum teleportation in an ideal environment,due to a fact that the particle will be ine-vitably affected by the noise channel during the distributing period.This paper also analyzes the influence of Pauli noise,which is a widely used noise channel model,on the fidelity of a two-particles state.As a result,the different concurrence in the two-particles state can generate different fidelity in some typical Pauli noise channel.This research can provide some theoretical value in the aspect of quantum communication network and the experiment research.

Key words: Quantum teleportation, Short-distance, Controller, Safety, Pauli noise, Fidelity

中图分类号: 

  • TP309
[1]BENNETT C H,BRASSARD G,CREPEAU C,et al.Telepor-ting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J].Physics Review Letter,1993,70(13):1895-1899.
[2]LIU J C,LI Y H,NIE Y Y.Controlled Teleportation of an Arbitrary Two-Particle Pure or Mixed State by Using a Five-Qubit Cluster State[J].International Journal of Theoretical Physics,2010,49(8):1976-1784.
[3]MAN Z X,XIA Y J,AN N B.Genuine multiqubit entanglement and controlled teleportation[J].Physical Review A,2007,75(5):052306.
[4]ZHANG Z J.Controlled teleportation of an arbitrary n-qubitquantum information using quantum secret sharing of classical message[J].Physics letters A,2006,352(1/2):55-58.
[5]YANG G,LIAN B W,NIE M,et al.Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak mea-surement[J].Chinese Physics B,2017,26(4):040305.
[6]ZHA X W,ZOU Z C,QI J X,et al.Bidirectional quantum controlled teleportation via five-qubit cluster state[J].International Journal of Theoretical Physics,2013,52(6):1740-744.
[7]HASSANPOUR S,HOUSHMAND M.Bidirectional teleporta-tion of a pure EPR state by using GHZ states[J].Quantum Information Processing,2016,15(2):905-912.
[8]PENG J Y,BAI M Q,MO Z W.Bidirectional quantum statessharing[J].International Journal of Theoretical Physics,2016,55(5):2481-2489.
[9]CHEN Y X,DU J,LIU S Y,et al.Cyclic quantum teleportation[J].Quantum Information Processing,2017,16(8):201.
[10]PENG J Y,BAI M Q,MO Z W.Deterministic Multi-hop Controlled Teleportation of Arbitrary Single-Qubit State[J].International Journal of Theoretical Physics,2017,56(10):3348-3458.
[11]ZHAN H T,Y X T,XIONG P Y,et al.Multi-hop teleportation based on W state and EPR pairs[J].Chin Phys B,2016,25(5):50305-050305.
[12]ZHU F,CHEN D J Z,CHEN X B,et al.Probabilistic teleportation of multi-particle partially entangled state[J].Chin Phys B,2008,17(3):771-777.
[13]YAN F,YAN T.Probabilistic teleportation via a non-maximally entangled GHZ state[J].Chinese Science Bulletin,2010,55(10):902-906.
[14]KARLSSON A,BOURENNANE M.Quantum teleportationusing three-particle entanglement[J].Physical Review A,1998,58(6):4394-4400.
[15]JOO J,PARK Y J,OH S,et al.Quantum teleportation via a W state[J].New Journal of Physics,2003,5(1):136.
[16]AGRAWAL P,PATI A.Perfect teleportation and superdensecoding with $W$ states[J].Physical Review A,2006,74(6):062320.
[17]TAN X,ZHANG X,FANG J.Perfect quantum teleportation by four-particle cluster state[J].Information Processing Letters,2016,116(5):347-350.
[18]PIRANDOLA S,EISERT J,WEEDBROOK C,et al.Advances in quantum teleportation[J].Nature Photonics,2015,9(10):641-652.
[19]TAN X D,HAN J Q.Short-Distance Teleportation of an Arbitrary Two-Qubit State Via a Bell State[J].International Journal of Theoretical Physics,2021,60(4):1275-1282.
[20]XIONG S Y,TANG L,ZHANG Q,et al.The rotation scheme of quantum states based on EPR pairs[J].Modern Physics Letters B,2022:2150579.
[21]OH S,LEE S,LEE H W.Fidelity of quantum teleportationthrough noisy channels[J].Physical Review A,2002,66(2):022316.
[22]DONG L,WANG J X,SHEN H Z,et al.Deterministic transmission of an arbitrary single-photon polarization state through bit-flip error channel[J].Quantum Information Processing,2014,13(6):1413-1424.
[23]TERHAL B M.Quantum error correction for quantum memories[J].Reviews of Modern Physics,2015,87(2):307-346.
[24]SHOR P W.Scheme for reducing decoherence in quantum computer memory[J].Physical Review A,1995,52(4):R2493-R2496.
[25]DONG L,WANG J X,LI Q Y,et al.Single logical qubit information encoding scheme with the minimal optical decoherence-free subsystem[J].Optics Letters,2016,41(5):1030-1033.
[26]XU G F,ZHANG J,TONG D M,et al.Nonadiabatic Holonomic Quantum Computation in Decoherence-Free Subspaces[J].Physical Review Letters,2012,109(17):170501.
[27]LI C K,NAKAHARA M,POON Y T,et al.Recursive encoding and decoding of the noiseless subsystem and decoherence-free subspace[J].Physical Review A,2011,84(4):044301.
[28]XIU X M,LI Q Y,LIN Y F,et al.Preparation of four-photon polarization-entangled decoherence-free states employing weak cross-Kerr nonlinearities[J].Physical Review A,2016,94(4):042321.
[29]PAN J W,SIMON C,BRUKNER Č,et al.Entanglement purification for quantum communication[J].Nature,2001,410(6832):1067-1070.
[30]REN B C,DU F F,DENG F G.Two-step hyperentanglement purification with the quantum-state-joining method[J].Physical Review A,2014,90(5):052309.
[31]KIM Y S,LEE J C,KWON O,et al.Protecting entanglement from decoherence using weak measurement and quantum mea-surement reversal[J].Nature Physics,2012,8(2):117-20.
[32]KIM Y S,CHO Y W,RA Y S,et al.Reversing the weak quantum measurement for a photonic qubit[J].Optics Express,2009,17(14):11978-11985.
[33]KOROTKOV A N,JORDAN A N.Undoing a Weak Quantum Measurement of a Solid-State Qubit[J].Physical Review Letters,2006,97(16):166805.
[34]LEE J C,JEONG Y C,KIM Y S,et al.Experimental demonstration of decoherence suppression via quantum measurement reversal[J].Optics Express,2011,19(17):16309-16316.
[35]YANG R K,JIANG L Z.Approximation of the quantum capacity of the general Pauli channel[J].Journal of Quantum Optics,2014(1):40-45.
[36]UHLMANN A.The “transition probability” in the state space of a*-algebra[J].Reports on Mathematical Physics,1976,9(2):273-279.
[37]JOZSA R.Fidelity for mixed quantum states[J].Journal ofModern Optics,1994,41(12):2315-2323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!