计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 220800051-6.doi: 10.11896/jsjkx.220800051

• 大数据&数据科学 • 上一篇    下一篇

基于邻域系统的粗糙集模型的代数性质

刘银山, 王豪, 秦克云   

  1. 西南交通大学数学学院 成都 611756
  • 发布日期:2023-11-09
  • 通讯作者: 秦克云(keyunqin@263.net)
  • 作者简介:(yinshanliu@foxmail.com)
  • 基金资助:
    国家自然科学基金(61976130)

Algebraic Properties of Rough Set Model Based on Neighborhood System

LIU Yinshan, WANG Hao, QIN Keyun   

  1. School of Mathematics,Southwest Jiaotong University,Chengdu 611756,China
  • Published:2023-11-09
  • About author:LIU Yinshan,born in 1998,postgra-duate.His main research interests include rough set theory,formal concept analysis and fuzzy logic.
    QIN Keyun,born in 1962,Ph.D,professor,Ph.D supervisor.His main research interests include rough set theory,formal concept analysis and fuzzy logic.
  • Supported by:
    National Natural Science Foundation of China(61976130).

摘要: 基于邻域系统的粗糙集模型是基于一般二元关系的广义粗糙集模型以及覆盖粗糙集模型的扩展。一般来说,不同的邻域系统可能生成相同的近似算子。给出不同邻域系统生成相同近似算子的条件,进而基于近似算子提出一种对邻域系统分类的方法。另外,给出基于邻域系统的粗糙近似算子的公理化描述方法。

关键词: 邻域系统近似算子, 邻域系统分类, 公理化方法

Abstract: The rough set model based on neighborhood system is an extension of generalized rough set model based on general binary relation and covering rough set model.In general,different neighborhood systems may generate the same approximation operator.This paper gives the conditions for different neighborhood systems to generate the same approximation operator,and then proposes a method to classify the neighborhood systems based on the approximation operator.In addition,the axiomatic description method of rough approximation operator based on neighborhood system is given.

Key words: Neighborhood system approximation operator, Neighborhood system classification, Axiomatic method

中图分类号: 

  • TP182
[1]PAWLAK Z.Rough sets[J].International Journal of Computer &Information Sciences,1982,11(5):341-356.
[2]WANG G Y,FU S,YANG J,et al.A Review of Research on Multi-Granularity Cognition Based Intelligent Computing[J].Chinese Journal of Computers,2022 45(6):1161-1175.
[3]YAO Y Y,LIN T Y.Generalization of rough sets using modal logics[J].Intelligent Automation & Soft Computing,1996,2(2):103-119.
[4]ZAKOWSKI W.Approximations in the space(u,π)[J].Demonstratio Mathematica,1983,16(3):761-770.
[5]DUBOIS D,PRADE H.Rough fuzzy sets and fuzzy rough sets[J].International Journal of General System,1990,17(2/3):191-209.
[6]LiN T Y,HUANG K J,LIU Q,et al.Rough sets,neighborhood systems and approximation[C]//Proceedings of the Fifth International Symposium on Methodologies of Intelligent Systems.1990:130-141.
[7]LIN T Y.Topological and fuzzy rough sets[M]//Intelligent Decision Support.Springer,Dordrecht,1992:287-304.
[8]LIN T Y.Neighborhood systems-A qualitative theory for fuzzy and rough sets[J].Advances in Machine Intelligence and Soft Computing,1997,4:132-155.
[9]SIERPINSKI W.General topology[M].Courier Dover Publications,2020.
[10]DAY M M.Convergence,closure and neighborhoods[J].Duke Mathematical Journal,1944,11(1):181-199.
[11]ATIK E,EL FATTAH A,NAWAR A,et al.Rough approxima-tion models via graphs based on neighborhood systems[J].Granular Computing,2021,6(4):1025-1035.
[12]SYAU Y R,LIN E B.Neighborhood systems and covering approximation spaces[J].Knowledge-Based Systems,2014,66:61-67.
[13]ZHANG Y L,LI C Q,LIN M L,et al.Relationships between generalized rough sets based on covering and reflexive neighborhood system[J].Information Sciences,2015,319:56-67.
[14]WANG G Y,YAO Y Y,YU H.A survey on rough set theory and applications[J].Chinese Journal of Computers,2009,32(7):1229-1246.
[15]LIN T Y,LIU Q.Rough approximate operators:axiomaticrough set theory[M]//Rough Sets,Fuzzy Sets and Knowledge Discovery. Springer,London,1994:256-260.
[16]ZHU F,HE H C.The axiomatization of the rough set[J].Chinese Journal of Computers(Chinese Edition),2000,23(3):330-333.
[17]SUN H,LIU D Y,LI W.The minimization of axiom groups of rough set[J].Chinese Journal of Computers(Chinese Edition),2002,25(2):202-209.
[18]YAO Y Y.Constructive and algebraic methods of the theory of rough sets[J].Information Sciences,1998,109(1/2/3/4):21-47.
[19]Thiele H.On axiomatic characterisations of crisp approximation operators[J].Information Sciences,2000,129(1/2/3/4):221-226.
[20]ZHANG Y L,LI J,WU W Z.On axiomatic characterizations of three pairs of covering based approximation operators[J].Information Sciences,2010,180(2):274-287.
[21]ZHANG Y L,LUO M K.On minimization of axiom sets characterizing covering-based approximation operators[J].Information Sciences,2011,181(14):3032-3042.
[22]ZHAO F,LI L.Axiomatization on generalized neighborhoodsystem-based rough sets[J].Soft Computing,2018,22(18):6099-6110.
[23]MORSI N N,YAKOUT M M.Axiomatics for fuzzy rough sets[J].Fuzzy Sets and Systems,1998,100(1/2/3):327-342.
[24]THIELE H.On axiomatic characterizations of fuzzy approximation operators[C]//International Conference on Rough Sets and Current Trends in Computing.Berlin:Springer,2000:277-285.
[25]THIELE H.On axiomatic characterization of fuzzy approximation operators.II.The rough fuzzy set based case[C]//Proceedings 31st IEEE International Symposium on Multiple-Valued Logic.IEEE,2001:330-335.
[26]WU W Z,LEUNG Y,MI J S.On characterizations of(I,T)-fuzzy rough approximation operators[J].Fuzzy Sets and Systems,2005,154(1):76-102.
[27]ZHOU L,WU W Z.On generalized intuitionistic fuzzy rough approximation operators[J].Information Sciences,2008,178(11):2448-2465.
[28]YAO Y Y.Relational interpretations of neighborhood operators and rough set approximation operators[J].Information Sciences,1998,111(1/2/3/4):239-259.
[29]LIAU C J,LIN E B,SYAU Y R.On consistent functions for neighborhood systems[J].International Journal of Approximate Reasoning,2020,121:39-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!