计算机科学 ›› 2023, Vol. 50 ›› Issue (9): 347-356.doi: 10.11896/jsjkx.220800243

• 计算机网络 • 上一篇    下一篇

车联网中基于联邦深度强化学习的任务卸载算法

林欣郁, 姚泽玮, 胡晟熙, 陈哲毅, 陈星   

  1. 福州大学计算机与大数据学院 福州 350108
    福建省网络计算与智能信息处理重点实验室 福州 350108
  • 收稿日期:2022-08-26 修回日期:2022-12-19 出版日期:2023-09-15 发布日期:2023-09-01
  • 通讯作者: 陈星(chenxing@fzu.edu.cn)
  • 作者简介:(linxy0826@163.com)
  • 基金资助:
    国家自然科学基金(62072108);福建省自然科学基金杰青项目(2020J06014)

Task Offloading Algorithm Based on Federated Deep Reinforcement Learning for Internet of Vehicles

LIN Xinyu, YAO Zewei, HU Shengxi, CHEN Zheyi, CHEN Xing   

  1. College of Computer and Data Science,Fuzhou University,Fuzhou 350108,China
    Fujian Provincial Key Laboratory of Networking Computing and Intelligent Information Processing,Fuzhou 350108,China
  • Received:2022-08-26 Revised:2022-12-19 Online:2023-09-15 Published:2023-09-01
  • About author:LIN Xinyu,born in 1999,postgraduate,is a student member of China Computer Federation.Her main research interests include computation offloading and mobile edge computing.
    CHEN Xing,born in 1985,Ph.D,professor,Ph.D supervisor,is a senior member of China Computer Federation.His main research interests include software engineering,system software and cloud computing.
  • Supported by:
    National Natural Science Foundation of China(62072108) and Natural Science Foundation of Fujian Province for Distinguished Young Scholars(2020J06014).

摘要: 随着车联网应用服务体系日益丰富,计算资源有限的车辆难以处理这些计算密集和时延敏感的车联网应用。计算卸载作为移动边缘计算中的一种关键技术可以解决这一难题。对于车联网中动态的多车辆多路侧单元的任务卸载环境,提出了一种基于联邦深度强化学习的任务卸载算法。该算法将每辆车都看作是智能体,采用联邦学习的框架训练各智能体,各智能体分布式决策卸载方案,以最小化系统的平均响应时间。设置评估实验,在多种动态变化的场景下对提出的算法的性能进行对比分析。实验结果显示,提出的算法求解出的系统平均响应时间短于基于规则的算法和多智能体深度强化学习算法,接近于理想方案,且求解时间远短于理想方案。实验结果表明,所提算法能够在可接受的算法执行时间内求解出接近于理想方案的系统平均响应时间。

关键词: 边缘计算, 任务卸载, 车联网, 深度强化学习, 联邦学习

Abstract: With the rapid development of the service system of Internet of Vehicles applications,vehicles with limited computational resources have difficulty in handling these computation-intensive and latency-sensitive applications.As a key technique in mobile edge computing,task offloading can address the challenge.Specially,a task offloading algorithm based on federated deep reinforcement learning(TOFDRL) is proposed for dynamic multi-vehicle multi-road-side-unit(multi-RSU) task offloading environment in Internet of Vehicles.Each vehicle is considered as an agent,and a federated learning framework is used to train each agent.Each agent makes distributed decisions,aiming to minimize the average system response time.Evaluation experiments are set up to compare and analyze the performance of the proposed algorithm under a variety of dynamically changing scenarios.Si-mulation results show that the average response time of system solved by the proposed algorithm is shorter than that of the rule-based algorithm and the multi-agent deep reinforcement learning algorithm,close to the ideal scheme,and its solution time is much shorter than the ideal solution.Experimental results demonstrate that the proposed algorithm is able to solve an average system response time which is close to the ideal solution within an acceptable execution time.

Key words: Mobile edge computing, Task offloading, Internet of Vehicles, Deep reinforcement learning, Federated learning

中图分类号: 

  • TP338
[1]FENG J,LIU Z,WU C,et al.Mobileedge computing for the internet of vehicles:offloading framework and job scheduling[J].IEEE Vehicular Technology Magazine,2019,14(1):28-36.
[2]ZHAN W,LUO C,WANG J,et al.Deep-reinforce ment-lear-ning-based offloading scheduling for vehicular edge computing[J].IEEE Internet of Things Journal,2020,7(6):5449-5465.
[3]MACH P,BECVAR Z.Mobile edge computing:a survey on architecture and computation offloading[J].IEEE Communications Surveys & Tutorials,2017,19(3):1628-1656.
[4]DINH H T,LEE C,NIYATO D,et al.A survey of mobile cloud computing:architecture,applications,and approaches[J].Wireless Communications and Mobile Computing,2013,13(18):1587-1611.
[5]RAZA S,WANG S,AHMED M,et al.Task offloading and resource allocation for iov using 5g nr-v2x communication[J].IEEE Internet of Things Journal,2022,9(13):10397-10410.
[6]LIN Y,ZHANG Y,LI J,et al.Popularity-aware online task offloading for heterogeneous vehicular edge computing using contextual clustering of bandits[J].IEEE Internet of Things Journal,2022,9(7):5422-5433.
[7]DAI P,HU K,WU X,et al.A probabilistic approach for coope-rative computation offloading in mec-assisted vehicular networks[J].IEEE Transactions on Intelligent Transportation Systems,2022,23(2):899-911.
[8]CHEN M,HAO Y.Task offloading for mobile edge computing in software defined ultra-dense network[J].IEEE Journal on Selected Areas in Communications,2018,36(3):587-597.
[9]LIN B,GUO W,CHEN G.Scheduling strategy for scienceworkflow with deadline constraint on multi-cloud[J].Journal on Communications,2018,39(1):56-69.
[10]HOU X,REN Z,WANG J,et al.Reliablecomputation offloading for edge-computing-enabled software-defined iov[J].IEEE Internet of Things Journal,2020,7(8):7097-7111.
[11]LIU Z,ZHENG H,ZHANG J,et al.Computation offloading and deployment optimization in multi-uav-enabled mobile edge computing systems[J].Computer Science,2022,49(S1):619-627.
[12]YAO Z,LIN J,HU J,et al.PSO-GA based approach to multi-edge load balancing[J].Computer Science,2021,48(S2):456-463.
[13]ALASMARI K R,II R C G,ALAM M.Mobile edge offloading using markov decision processes[C]//Edge Computing-EDGE 2018.Seattle,WA,USA,2018.
[14]SUTTON R S,BARTO A G.Reinforcement learning,secondedition:an introduction[M].Cambridge:The MIT Press,2018.
[15]ZHANG K,ZHU Y,LENG S,et al.Deep learning empowered task offloading for mobile edge computing in urban informatics[J].IEEE Internet of Things Journal,2019,6(5):7635-7647.
[16]MIN M,XIAO L,CHEN Y,et al.Learning-based computation offloading for iot devices with energy harvesting[J].IEEE Transactions on Vehicular Technology,2019,68(2):1930-1941.
[17]HUANG L,BI S,ZHANG Y J A.Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks[J].IEEE Transactions on Mobile Computing,2020,19(11):2581-2593.
[18]LUO Q,LI C,LUAN T H,et al.Collaborative data scheduling for vehicular edge computing via deep reinforcement learning[J].IEEE Internet of Things Journal,2020,7(10):9637-9650.
[19]KE H,WANG J,DENG L,et al.Deep reinforcement learning-based adaptive computation offloading for mec in heterogeneous vehicular networks[J].IEEE Transactions on Vehicular Technology,2020,69(7):7916-7929.
[20]YU S,CHEN X,ZHOU Z,et al.When deep reinforcementlearning meets federated learning:intelligent multitimescale resource management for multiaccess edge computing in 5g ultradense network[J].IEEE Internet of Things Journal,2021,8(4):2238-2251.
[21]TANG M,WONG V W.Deep reinforcement learning for task offloading in mobile edge computing systems[J].IEEE Transactions on Mobile Computing,2022,21(6):1985-1997.
[22]HUANG X,LENG S,MAHARJAN S,et al.Multi-agent deep reinforcement learning for computation offloading and interfe-rence coordination in small cell networks[J].IEEE Transactions on Vehicular Technology,2021,70(9):9282-9293.
[23]CHEN X,HU J,CHEN Z,et al.A reinforcement learning-empowered feedback control system for industrial internet of things[J].IEEE Transactions on Industrial Informatics,2022,18(4):2724-2733.
[24]MNIH V,KAVUKCUOGLU K,SILVER D,et al.Human-level control through deep reinforcement learning[J].Nature,2015,518(7540):529-533.
[25]JIA M,LIANG W,XU Z,et al.Qos-aware cloudlet load balancing in wireless metropolitan area networks[J].IEEE Transactions on Cloud Computing,2020,8(2):623-634.
[26]KLEINROCK L.Queueing systems,volume I:theory[M].Hoboken:Wiley,1975:101-103.
[27]LIANG L,YE H,LI G Y.Spectrum sharing in vehicular networks based on multi-agent reinforcement learning[J].IEEE Journal on Selected Areas in Communications,2019,37(10):2282-2292.
[28]WATKINS C J C H.Learning from delayed rewards[D].Cambridge:University of Cambridge,1989.
[29]HINTON G.Overview of mini-batch gradient descent[EB/OL].http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.
[30]WU Y,GUO K,HUANG J,et al.Secrecy-based energy-efficient data offloading via dual connectivity over unlicensed spectrums[J].IEEE Journal on Selected Areas in Communications,2016,34(12):3252-3270.
[31]NAIR V,HINTON G E.Rectified linear units improve restric-ted boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning(ICML-10).Haifa,Is-rael,2010:807-814.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!