计算机科学 ›› 2023, Vol. 50 ›› Issue (1): 52-58.doi: 10.11896/jsjkx.220900032

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于影响力剪枝的图神经网络快速计算图精简

顾希之, 邵蓥侠   

  1. 北京邮电大学计算机学院(国家示范性软件学院) 北京 100876
  • 收稿日期:2022-09-05 修回日期:2022-10-28 出版日期:2023-01-15 发布日期:2023-01-09
  • 通讯作者: 邵蓥侠(shaoyx@bupt.edu.cn)
  • 作者简介:guxizhi@bupt.edu.cn
  • 基金资助:
    国家自然科学基金(62272054,U1936104,62192784)

Fast Computation Graph Simplification via Influence-based Pruning for Graph Neural Network

GU Xizhi, SHAO Yingxia   

  1. School of Computer Science,Beijing University of Posts and Telecommunications,Beijing 100876,China
  • Received:2022-09-05 Revised:2022-10-28 Online:2023-01-15 Published:2023-01-09
  • About author:GU Xizhi,born in 1998,postgraduate,is a student member of China Computer Federation.His main research interest is large-scale graph neural network.
    SHAO Yingxia,born in 1988,Ph.D,associate professor,is a senior member of China Computer Federation.His main research interests include large-scale graph analysis,parallel computing framework and graph learning.
  • Supported by:
    National Natural Science Foundation of China(62272054,U1936104,62192784).

摘要: 计算图精简是提升图神经网络(Graph Neural Network,GNN)模型训练速度的一种优化技术,它利用节点间存在共同邻居的特性,通过消除聚合阶段的冗余计算,来加速图神经网络模型的训练。但是,在处理大规模图数据时,已有的计算图精简技术存在计算效率低的问题,影响了计算图精简技术在大规模图神经网络中的应用。文中详细分析了当前的计算图精简技术,统计了包括搜索和重构两阶段处理的时间开销,并总结了现有方法的不足。在此基础上,提出了基于影响力剪枝的图神经网络快速计算图精简算法。该算法应用影响力模型刻画各个节点对计算图精简的贡献,并基于影响力对共同邻居的搜索空间进行剪枝,极大地提升了搜索阶段的效率。此外,详细分析了算法复杂度,从理论上证明了该技术期望的加速效果。最后,为验证所提算法的有效性,将所提算法应用到两种主流的计算图精简技术上,选取常见的图神经网络模型在多个数据集上进行测试,实验结果表明所提算法在保证一定冗余计算去除量的前提下,能够显著地提升计算图精简的效率。相比基线计算图精简技术,所提技术在PPI数据集上搜索阶段的加速效果最高提升了3.4倍,全过程最高提升了1.6倍;在Reddit数据集上搜索阶段的加速效果最高提升了5.1倍,全过程最高提升了3.2倍。

关键词: 图神经网络, 计算图精简, 共同邻居, 冗余计算, 剪枝

Abstract: Computation graph simplification is a kind of optimization technique to improve the training speed of graph neural network models.It uses the characteristics of common neighbors among nodes and speeds up the training of graph neural network models by eliminating redundant computation in the stage of aggregation.However,when dealing with large-scale graph data,the existing computation graph simplification techniques suffer from the problem of low computation efficiency,which affects the application of computation graph simplification in large-scale graph neural networks.This paper analyzes the current techniques of computation graph simplification in detail by counting the overhead of two phases including searching and reconstruction,and summarizes the shortcomings of existing techniques.On this basis,it proposes an algorithm of fast computation graph simplification via influence-based pruning for graph neural network.This algorithm applies an influence model to describe the contribution of each node to the computation graph simplification and prunes the searching space of common neighbors based on influence,which greatly improves the efficiency of the phase of searching.In addition,this paper analyzes the algorithm complexity and theoretically proves the expected acceleration effect of this technique.Finally,in order to verify the effectiveness of this novel algorithm,the algorithm is applied to two mainstream computation graph simplification technique,and common graph neural network models areselected to test on some data sets.Experimental results demonstrate that the novel algorithm can significantly improve the efficiency of the computation graph simplification on the premise of ensuring a certain amount of redundant computation reduction.Compared with the baseline of computation graph simplification,the proposed technique can speed up to 3.4 times in searching phase and speed up to 1.6 times on the whole process on PPI dataset,while it can speed up to 5.1 times in searching phase and speed up to 3.2 times on the whole process on Reddit dataset.

Key words: Graph neural network, Computation graph simplification, Common neighbors, Redundant computation, Pruning

中图分类号: 

  • TP391
[1]GIRVAN M,NEWMAN M E J.Community structure in social and biological networks[J].Proceedings of the National Academy of Sciences,2002,99(12):7821-7826.
[2]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016.
[3]VELIČKOVIĆ P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,2017.
[4]XU K,HU W,LESKOVEC J,et al.How powerful are graph neural networks?[J].arXiv:1810.00826,2018.
[5]HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems.2017:1025-1035.
[6]CHEN J,MA T,XIAO C.Fastgcn:fast learning with graph convolutional networks via importance sampling[J].arXiv:1801.10247,2018.
[7]ZOU D,HU Z,WANG Y,et al.Layer-dependent importance sampling for training deep and large graph convolutional networks[C]//Advances in Neural Information Processing Systems.2019:11249-11259.
[8]ZENG H,ZHOU H,SRIVASTAVA A,et al.Graphsaint:Graph sampling based inductive learning method[J].arXiv:1907.04931,2019.
[9]CHIANG W L,LIU X,SI S,et al.Cluster-gcn:An efficient algorithm for training deep and large graph convolutional networks[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:257-266.
[10]WU F,SOUZA A,ZHANG T,et al.Simplifying graph convolutional networks[C]//International Conference on Machine Learning.PMLR,2019:6861-6871.
[11]BOJCHEVSKI A,KLICPERA J,PEROZZI B,et al.Scalinggraph neural networks with approximate pagerank[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:2464-2473.
[12]ZHU R,ZHAO K,YANG H,et al.Aligraph:a comprehensive graph neural network platform[J].arXiv:1902.08730,2019.
[13]CHEN X,WANG Y,XIE X,et al.Rubik:A hierarchical architecture for efficient graph neural network training[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2021,41(4):936-949.
[14]JIA Z,LIN S,YING R,et al.Redundancy-free computation for graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:997-1005.
[15]ZENG H,PRASANNA V.GraphACT:Accelerating GCN training on CPU-FPGA heterogeneous platforms[C]//Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.2020:255-265.
[16]FEY M,LENSSEN J E.Fast graph representation learning with PyTorch Geometric[J].arXiv:1903.02428,2019.
[1] 郝敬宇, 文静轩, 刘华锋, 景丽萍, 于剑.
结合全局信息的深度图解耦协同过滤
Deep Disentangled Collaborative Filtering with Graph Global Information
计算机科学, 2023, 50(1): 41-51. https://doi.org/10.11896/jsjkx.220900255
[2] 蒲金垚, 卜令梅, 卢永美, 叶子铭, 陈黎, 于中华.
利用异构图神经网络实现情绪-原因对的有效抽取
Utilizing Heterogeneous Graph Neural Network to Extract Emotion-Cause Pairs Effectively
计算机科学, 2023, 50(1): 205-212. https://doi.org/10.11896/jsjkx.211100265
[3] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[4] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[5] 齐秀秀, 王佳昊, 李文雄, 周帆.
基于概率元学习的矩阵补全预测融合算法
Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning
计算机科学, 2022, 49(7): 18-24. https://doi.org/10.11896/jsjkx.210600126
[6] 杨炳新, 郭艳蓉, 郝世杰, 洪日昌.
基于数据增广和模型集成策略的图神经网络在抑郁症识别上的应用
Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition
计算机科学, 2022, 49(7): 57-63. https://doi.org/10.11896/jsjkx.210800070
[7] 熊中敏, 舒贵文, 郭怀宇.
融合用户偏好的图神经网络推荐模型
Graph Neural Network Recommendation Model Integrating User Preferences
计算机科学, 2022, 49(6): 165-171. https://doi.org/10.11896/jsjkx.210400276
[8] 邓朝阳, 仲国强, 王栋.
基于注意力门控图神经网络的文本分类
Text Classification Based on Attention Gated Graph Neural Network
计算机科学, 2022, 49(6): 326-334. https://doi.org/10.11896/jsjkx.210400218
[9] 余皑欣, 冯秀芳, 孙静宇.
结合物品相似性的社交信任推荐算法
Social Trust Recommendation Algorithm Combining Item Similarity
计算机科学, 2022, 49(5): 144-151. https://doi.org/10.11896/jsjkx.210300217
[10] 李勇, 吴京鹏, 张钟颖, 张强.
融合快速注意力机制的节点无特征网络链路预测算法
Link Prediction for Node Featureless Networks Based on Faster Attention Mechanism
计算机科学, 2022, 49(4): 43-48. https://doi.org/10.11896/jsjkx.210800276
[11] 曹合心, 赵亮, 李雪峰.
图神经网络在Text-to-SQL解析中的技术研究
Technical Research of Graph Neural Network for Text-to-SQL Parsing
计算机科学, 2022, 49(4): 110-115. https://doi.org/10.11896/jsjkx.210200173
[12] 苗旭鹏, 周跃, 邵蓥侠, 崔斌.
GSO:基于图神经网络的深度学习计算图子图替换优化框架
GSO:A GNN-based Deep Learning Computation Graph Substitutions Optimization Framework
计算机科学, 2022, 49(3): 86-91. https://doi.org/10.11896/jsjkx.210700199
[13] 杨旭华, 金鑫, 陶进, 毛剑飞.
基于图神经网络和依存句法分析的文本分类
Text Classification Based on Graph Neural Networks and Dependency Parsing
计算机科学, 2022, 49(12): 293-300. https://doi.org/10.11896/jsjkx.220300195
[14] 孙开伟, 刘松, 杜雨露.
基于属性图注意力网络的电影推荐模型
Movie Recommendation Model Based on Attribute Graph Attention Network
计算机科学, 2022, 49(11A): 211100106-8. https://doi.org/10.11896/jsjkx.211100106
[15] 李宝珍, 张晋, 王宝录, 余平.
融合多层次视觉信息的人物交互动作识别
Human-Object Interaction Recognition Integrating Multi-level Visual Features
计算机科学, 2022, 49(11A): 220700012-8. https://doi.org/10.11896/jsjkx.220700012
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!