计算机科学 ›› 2022, Vol. 49 ›› Issue (5): 144-151.doi: 10.11896/jsjkx.210300217

• 数据库&大数据&数据科学 • 上一篇    下一篇

结合物品相似性的社交信任推荐算法

余皑欣, 冯秀芳, 孙静宇   

  1. 太原理工大学软件学院 太原030024
  • 收稿日期:2021-03-22 修回日期:2021-09-13 出版日期:2022-05-15 发布日期:2022-05-06
  • 通讯作者: 冯秀芳(feng_xf2008@126.com )
  • 作者简介:(yax_1203@163.com)
  • 基金资助:
    山西省重点研发计划(201903D121121)

Social Trust Recommendation Algorithm Combining Item Similarity

YU Ai-xin, FENG Xiu-fang, SUN Jing-yu   

  1. College of Software,Taiyuan University of Technology,Taiyuan 030024,China
  • Received:2021-03-22 Revised:2021-09-13 Online:2022-05-15 Published:2022-05-06
  • About author:YU Ai-xin,born in 1996,postgraduate,is a member of China Computer Federation.Her main research interests include recommendation system and data mining.
    FENG Xiu-fang,born in 1966,Ph.D,professor,is a member of China Computer Federation.Her main research interests include artificial intelligence,Internet of things and cloud computing.
  • Supported by:
    Key Research and Development Plan of Shanxi Province(201903D121121).

摘要: 随着互联网的快速发展,用户很难在大量的网络数据中找到自己感兴趣的内容,而推荐系统能帮助解决这一问题。传统的推荐系统仅依赖用户历史行为数据进行推荐,存在数据稀疏和冷启动的问题。将社交网络信息融入推荐系统中被证明能够有效地解决传统推荐系统的问题,提高了推荐质量。但是,大部分基于社交网络的推荐仅关注用户之间的单向信任关系,忽略了被信任关系和物品自身因素对推荐结果的影响,因此提出了结合物品相似性的社交信任推荐算法SocialIS。SocialIS算法考虑了用户作为信任者和被信任者时邻居用户对用户的影响,并采用Node2vec算法训练得到包含用户偏好的物品相似性向量,再使用图神经网络学习用户和物品的特征向量进行评分预测。在Epinions和Ciao数据集上进行了大量实验,采用基于误差的指标(MAE和RMSE)对所提算法的性能进行度量,并与其他算法进行对比,验证了所提算法的性能。实验结果表明,与其他算法相比,所提算法的评分预测误差更小,推荐效果更好。

关键词: Node2vec, 社交网络, 图神经网络, 推荐系统, 信任推荐

Abstract: With the rapid development of Internet,it is difficult for users to find the content they are interested in from massive network data,while the recommendation system can solve this problem.Traditional recommendation systems only rely on user’s historical behavior data for recommendation,which has the problems of data sparsity and cold start.The integration of social network information into the recommendation system has been proven to effectively solve the problems of the traditional recommendation system and improve the quality of recommendation system.However,most recommendation systems based on social networks only focus on the one-way trust relationships between users,and ignore the influence of the trusted relationship and the item’s own factors on recommendation results.Therefore,a social trust recommendation algorithm,called SocialIS,which combines item similarity,is proposed.The influence of neighbor users on user when the user is truster and trustee is considered by SocialIS,and the Node2vec algorithm is used to train the item similarity vector containing the user’s preference,and then the graph neural network is used to learn the feature vector of the user and the item to predict the score.A large number of experiments are conducted on the Epinions and Ciao data sets,and the performance of the proposed algorithm is measured by error-based indicators (MAE and RMSE),and compared with other algorithms to verify its performance.Experimental results show that compared with other algorithms,the proposed algorithm had smaller scoring prediction error and better recommendation effect.

Key words: Graph neural network, Node2vec, Recommendation system, Social network, Trust recommendation

中图分类号: 

  • TP391
[1]ZHOU W Z,CAO D,XU Y F,et al.Review of Recommendation System Research[J].Journal of Hebei University of Science and Technology,2020,41(1):76-87.
[2]DU D F,XU T,LU Y N,et al.User Rating Prediction Based on Probability Matrix Decomposition under Trust Mechanism[J].Journal of Software,2018,29(12):3747-3763.
[3]WANG G X,LIU H P.Summary of personalized recommendation system[J].Computer Engineering and Applications,2012,48(7):66-76.
[4]JANNACH D,ZANKER M,FELFERNIG A,et al.Recommender Systems:An Introduction[M].Cambridge University Press,2010.
[5]MA W K,LI G,LI Z Y,et al.A Top-N personalized recommendation algorithm based on tags[J].Computer Science,2019,46(S2):224-229.
[6]CHEN H.The Impact of Comments and Recommendation System on Online Shopper Buying Behaviour[J].Journal of Networks,2012,7(2):345-350.
[7]GUO L,MA J,CHEN Z M.A social recommendation algorithm sensitive to the strength of trust relationship[J].Computer Research and Development,2013,50(9):1805-1813.
[8]LI Y S,SONG M N,E H H,et al.Social recommendation algorithm fusing user interest social network[J].Journal of China Universities of Posts & Telecommunications,2014,21(14):26-33.
[9]WANG W H,ZENG Y.Collaborative filtering recommendation algorithm based on clustering and user preference[J].Computer Engineering and Applications,2020,56(3):68-73.
[10]MA H,YANG H X,LYU M R,et al.SoRec:social recommendation using probabilistic matrix factorization[C]//Proceedings of the 17th ACM Conference on Information and Knowledge Management.Association for Computing Machinery,2008:931-940.
[11]JAMALI M,ESTER M.A matrix factorization technique with trust propagation for recommendation in social networks[C]//Proceedings of the fourth ACM conference on Recommender systems.Association for Computing Machinery,2010:135-142.
[12]XIANG C G,XIONG S H,WANG D,et al.Social Friend Re-commendation Algorithm Based onAssociation Rules and Simila-rity[J].Computer Engineering,2019,45(4):175-180.
[13]LONG Z Y,CHEN Z G,XU C L.Social Network Friend Re-commendation Algorithm Based on User Interaction[J].Compu-ter Engineering,2019,45(3):132-137.
[14]HAN N,QIAO S J,YUAN C A,et al.A Fast Parallel Community Detection Algorithm for Mobile Social Networks[J].Journal of Chongqing University of Technology(Natural Science),2020,34( 1):94-102.
[15]PAN Y T,HE F Z,YU H P.A social recommendation algo-rithm based on implicit similarity of trust relationships[J].Chinese Journal of Computers,2018,41(1):65-81.
[16]HUANG L W,JIANG B T,LV S Y,et al.Research review of recommendation system based on deep learning[J].Chinese Journal of Computers,2018,41(7):1619-1647.
[17]SALAKHUTDINOV R,MNIH A.Probabilistic Matrix Factorization[C]//Proceedings of the 20th International Conference on Neural Information Processing Systems.2007:1257-1264.
[18]MA H,ZHOU D,LIU C,et al.Recommendation system with social regularization[C]//Proceedings of the 4thACM International Conference on Web Search and Data Mining.Hong Kong,China,2011:287-296.
[19]YANG B,LEI Y,LIU J,et al.Social collaborative filtering bytrust[J].IEEE Transactions on Software Engineering,2016,39(8):1633-1647.
[20]FAN W Q,LI Q,CHENG M.Deep modeling of social relations for recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018:8075-8076.
[21]FAN W Q,MA Y,LI Q,et al.Graph Neural Networks for Social Recommendation[C]//The World Wide Web Conference.Association for Computing Machinery,2019:417-426.
[1] 程章桃, 钟婷, 张晟铭, 周帆.
基于图学习的推荐系统研究综述
Survey of Recommender Systems Based on Graph Learning
计算机科学, 2022, 49(9): 1-13. https://doi.org/10.11896/jsjkx.210900072
[2] 王冠宇, 钟婷, 冯宇, 周帆.
基于矢量量化编码的协同过滤推荐方法
Collaborative Filtering Recommendation Method Based on Vector Quantization Coding
计算机科学, 2022, 49(9): 48-54. https://doi.org/10.11896/jsjkx.210700109
[3] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[4] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[5] 秦琪琦, 张月琴, 王润泽, 张泽华.
基于知识图谱的层次粒化推荐方法
Hierarchical Granulation Recommendation Method Based on Knowledge Graph
计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111
[6] 方义秋, 张震坤, 葛君伟.
基于自注意力机制和迁移学习的跨领域推荐算法
Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning
计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011
[7] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[8] 帅剑波, 王金策, 黄飞虎, 彭舰.
基于神经架构搜索的点击率预测模型
Click-Through Rate Prediction Model Based on Neural Architecture Search
计算机科学, 2022, 49(7): 10-17. https://doi.org/10.11896/jsjkx.210600009
[9] 齐秀秀, 王佳昊, 李文雄, 周帆.
基于概率元学习的矩阵补全预测融合算法
Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning
计算机科学, 2022, 49(7): 18-24. https://doi.org/10.11896/jsjkx.210600126
[10] 杨炳新, 郭艳蓉, 郝世杰, 洪日昌.
基于数据增广和模型集成策略的图神经网络在抑郁症识别上的应用
Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition
计算机科学, 2022, 49(7): 57-63. https://doi.org/10.11896/jsjkx.210800070
[11] 蔡晓娟, 谭文安.
一种改进的融合相似度和信任度的协同过滤算法
Improved Collaborative Filtering Algorithm Combining Similarity and Trust
计算机科学, 2022, 49(6A): 238-241. https://doi.org/10.11896/jsjkx.210400088
[12] 何亦琛, 毛宜军, 谢贤芬, 古万荣.
基于点割集图分割的矩阵变换与分解的推荐算法
Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation
计算机科学, 2022, 49(6A): 272-279. https://doi.org/10.11896/jsjkx.210600159
[13] 魏鹏, 马玉亮, 袁野, 吴安彪.
用户行为驱动的时序影响力最大化问题研究
Study on Temporal Influence Maximization Driven by User Behavior
计算机科学, 2022, 49(6): 119-126. https://doi.org/10.11896/jsjkx.210700145
[14] 洪志理, 赖俊, 曹雷, 陈希亮, 徐志雄.
基于遗憾探索的竞争网络强化学习智能推荐方法研究
Study on Intelligent Recommendation Method of Dueling Network Reinforcement Learning Based on Regret Exploration
计算机科学, 2022, 49(6): 149-157. https://doi.org/10.11896/jsjkx.210600226
[15] 郭亮, 杨兴耀, 于炯, 韩晨, 黄仲浩.
基于注意力机制和门控网络相结合的混合推荐系统
Hybrid Recommender System Based on Attention Mechanisms and Gating Network
计算机科学, 2022, 49(6): 158-164. https://doi.org/10.11896/jsjkx.210500013
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!