计算机科学 ›› 2023, Vol. 50 ›› Issue (7): 332-338.doi: 10.11896/jsjkx.220900038
李荣昌1, 郑海斌1, 赵文红2, 陈晋音1,3
LI Rongchang1, ZHENG Haibin1, ZHAO Wenhong2, CHEN Jinyin1,3
摘要: 近年来,数据隐私保护法规限制了不同图数据拥有者之间的数据直接交换,出现了“数据孤岛”现象。为解决上述问题,纵向图联邦学习通过秘密交换嵌入表示的方式实现图数据分布式训练,在众多现实领域具有广泛应用,如药物研发、用户发掘以及商品推荐等。然而,纵向图联邦学习中的诚实参与方在训练过程中仍然存在隐私泄露的风险,为此提出了一个由诚实但好奇的参与方基于生成式网络发动嵌入表示重构攻击,通过范数损失函数使得生成式网络的输出结果向训练公布的置信度逼近,从而重构参与方的隐私数据。实验结果表明,所提嵌入表示重构攻击在Cora,Citeseer以及Pubmed数据集上均能完整地重构参与方的嵌入表示,凸显了纵向图联邦学习中参与方嵌入表示的隐私泄露风险。
中图分类号:
[1]FAN W Q,MA Y,LI Q,et al.Graph neural networks for social recommendation[C]//The World Wide Web Conference.ACM,2019:417-426. [2]WANG X Y,MA Y,WANG Y Q,et al.Traffic flow prediction via spatial temporal graph neural network[C]//The World Wide Web Conference.ACM,2020:1082-1092. [3]XIAO C,XU L L.Loosely Coupled Graph Convolutional Neural Network for Text Classification[J].Journal of Chinese Compu-ter Systems,2021,42(3):449-453. [4]VOIGT P,AXEL VON DEM B.The EU General Data Protection Regulation(Gdpr)[M].Cham:Springer International Publishing,2017. [5]Data Security Law of the People’s Republic of China [J].Bulletin of the Standing Committee of the National People’s Congress of the People’s Republic of China,2021(5):951-956. [6]YANG Q,LIU Y,CHENG Y,et al.Federated learning[J].Synthesis Lectures on Artificial Intelligence and Machine Learning,2019,13(3):1-207. [7]CHEN C C,ZHOU J,ZHENG L F,et al.Vertically Federated Graph Neural Network for Privacy-Preserving Node Classification[C]//Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence.2022:1959-1965. [8]ZHOU H K,HUA B.Homomorphic Encryption Offloading and Its Application in Privacy-preserving Computing[J].Journal of Chinese Computer Systems,2021,42(3):595-600. [9]NI X,XU X L,LYU L J,et al.A Vertical Federated Learning Framework for Graph Convolutional Network[J].arXiv:2106.11593,2021. [10]HE C Y,KESHAV B,EMIR C,et al.Fedgraphnn:A federated learning system and benchmark for graph neural networks[J].arXiv:2104.07145,2021. [11]DUDDU V,BOUTET A,SHEJWALKAR V.Quantifying Privacy Leakage in Graph Embedding[C]//MobiQuitous’20:Computing,Networking and Services.ACM,2020:76-85. [12]ZHANG Z K,CHEN M,MICHAEL B,et al.Inference Attacks Against Graph Neural Networks[C]//Proceedings of the 31th USENIX Security Symposium.USENIX,2022:1-18. [13]WANG Y,SUN L.Membership inference attacks on knowledge graphs[J].arXiv:2104.08273,2021. [14]WU B,YANG X W,PAN S,et al.Adapting membership infe-rence attacks to gnn for graph classification:Approaches and implications[C]//IEEE International Conference on Data Mining.IEEE,2021:1421-1426. [15]LIAO P Y,ZHAO H,XU K,et al.Informationobfuscation of graph neural networks[C]//Proceedings of the 38th International Conference on Machine Learning.PMLR,2021:6600-6610. [16]MCMAHAN B,MOORE E,RAMAGE D,et al.Communica-tion-efficient learning of deep networks from decentralized data[C]//Proceedings of the 20th International Conference on Artificial Intelligence and Statistics.PMLR,2017:1273-1282. [17]WU C H,WU F Z,CAO Y,et al.Fedgnn:Federated graph neural network for privacy-preserving recommendation[J].arXiv:2102.04925,2021. [18]LI O,SUN J K,YANG X,et al.Label leakage and protection in two-party split learning[J].arXiv:2102.08504,2021. [19]FU C,ZHANG X H,JI S L,et al.Label inference attacksagainst vertical federated learning[C]//31st USENIX Security Symposium.USENIX,2022:1-18. [20]WENG H Q,ZHANG J,XUE F,et al.Privacy leakage of real-world vertical federated learning[J].arXiv:2011.09290,2020. [21]JIANG X,ZHOU X B,GROSSKLAGS J.Comprehensive analysis of privacy leakage in vertical federated learning during prediction[J].Proceedings of Privacy Enhancing Technologies,2022(2):263-281. [22]JIN X,CHEN P Y,HSU C Y,et al.CAFE:Catastrophic data leakage in vertical federated learning[C]//Advances in Neural Information Processing Systems.NeurIPS,2021:994-1006. [23]KIPF T N,WELLING M.Semi-Supervised Classification withGraph Convolutional Networks[C]//5th International Confe-rence on Learning Representations.2017:1-14. [24]ABADI M,CHU A,GOODFELLOW I,et al.Deep learning with differential privacy[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.ACM,2016:308-318. [25]DWORK C,ROTH A.The Algorithmic Foundations of Diffe-rential Privacy[J].Foundations and Trends in Theoretical Computer Science,2014:9(3/4):211-407. |
|