计算机科学 ›› 2023, Vol. 50 ›› Issue (9): 82-89.doi: 10.11896/jsjkx.221000199
刘轩宇, 张帅, 霍树民, 商珂
LIU Xuanyu, ZHANG Shuai, HUO Shumin, SHANG Ke
摘要: 微服务架构因具有灵活、可扩展等特性,能够有效地提高软件的敏捷性,成为目前云中应用交付最主流的方法。然而,微服务化拆分使得应用的攻击面呈爆炸式增长,给以“要地防御”为核心的移动目标防御策略设计带来了巨大的挑战。针对该问题,提出了一种基于自适应遗传算法(AGA)的微服务移动目标防御策略,即动态轮换策略(DRS)。首先,基于微服务的特点,对攻击者的攻击路径进行分析;然后,提出微服务攻击图模型来形式化各种攻击场景,并对移动目标防御策略的安全增益和防御回报率进行定量分析;最后使用AGA求解移动目标防御的最优安全配置,即微服务的最优动态轮换周期。实验表明DRS具有可扩展性,相比统一配置策略、DSEOM以及随机配置策略,其防御回报率分别提高了17.25%,41.01%和222.88%。
中图分类号:
[1]GAO X,STEENKAMER B,GU Z,et al.A study on the security implications of information leakages in container clouds[J].IEEE Transactions on Dependable and Secure Computing,2018,18(1):174-191. [2]BUZACHIS A,CELESTI A,GALLETTA A,et al.Evaluating an application aware distributed Dijkstra shortest path algorithm in hybrid cloud/edge environments[J].IEEE Transactions on Sustainable Computing,2021,7(2):289-298. [3]CERNY T,DONAHOO M J,PECHANEC J.Disambiguationand comparison of soa,microservices and self-contained systems[C]//Proceedings of the International Conference on Research in Adaptive and Convergent Systems.2017:228-235. [4]PRACHITMUTITA I,AITTINONMONGKOL W,POJJANASUKSAKUL N,et al.Auto-scaling microservices on IaaS under SLA with cost-effective framework[C]//2018 Tenth International Conference on Advanced Computational Intelligence(ICACI).IEEE,2018:583-588. [5]SULTAN S,AHMAD I,DIMITRIOU T.Container security:Issues,challenges,and the road ahead[J].IEEE Access,2019,7:52976-52996. [6]SOLDANI J,TAMBURRI D A,VAN DEN HEUVEL W J.Thepains and gains of microservices:A systematic grey literature review[J].Journal of Systems and Software,2018,146:215-232. [7]HEORHIADI V,RAJAGOPALAN S,JAMJOOM H,et al.Gremlin:Systematic resilience testing of microservices[C]//2016 IEEE 36th International Conference on Distributed Computing Systems(ICDCS).IEEE,2016:57-66. [8]ZHANG S,GUO Y F,SUN P H,et al.Deep ReinforcementLearning based Moving Target Defense Strategy Optimization Scheme for Cloud Native Environment[J].Journal of Electro-nics & Information Technology,2022,44:1-9. [9]WANG Y,GUO Y,GUO Z,et al.Securing the intermediate data of scientific workflows in clouds with ACISO[J].IEEE Access,2019,7:126603-126617. [10]ALAVIZADEH H,HONG J B,JANG-JACCARD J,et al.Comprehensive security assessment of combined MTD techniques for the cloud[C]//Proceedings of the 5th ACM Workshop on Mo-ving Target Defense.2018:11-20. [11]ALAVIZADEH H,HONG J B,KIM D S,et al.Evaluating the effectiveness of shuffle and redundancy mtd techniques in the cloud[J].Computers & Security,2021,102:102091. [12]ALAVIZADEH H,JANG-JACCARD J,KIM D S.Evaluation for combination of shuffle and diversity on moving target defense strategy for cloud computing[C]//2018 17th IEEE International Conference on Trust,Security And Privacy In Computing And Communications/12th IEEE International Conference on Big Data Science And Engineering(TrustCom/BigDataSE).IEEE,2018:573-578. [13]CHO J H,SHARMA D P,ALAVIZADEH H,et al.Toward proactive,adaptive defense:A survey on moving target defense[J].IEEE Communications Surveys & Tutorials,2020,22(1):709-745. [14]WANG L,WU D.Moving target defense against network reconnaissance with software defined networking[C]//International Conference on Information Security.Cham:Springer,2016:203-217. [15]TORQUATO M,MACIEL P,VIEIRA M.Analysis of vm migration scheduling as moving target defense against insider attacks[C]//Proceedings of the 36th Annual ACM Symposium on Applied Computing.2021:194-202. [16]JIN H,LI Z,ZOU D,et al.Dseom:A framework for dynamic security evaluation and optimization of mtd in container-based cloud[J].IEEE Transactions on Dependable and Secure Computing,2019,18(3):1125-1136. [17]YING F,ZHAO S,DENG H.Microservice Security Framework for IoT by Mimic Defense Mechanism[J].Sensors,2022,22(6):2418. [18]NIFE F N,KOTULSKI Z.Application-aware firewall mecha-nism for software defined networks[J].Journal of Network and Systems Management,2020,28(3):605-626. [19]BARDAS A G,SUNDARAMURTHY S C,OU X,et al.MTD CBITS:Moving target defense for cloud-based IT systems[C]//European Symposium on Research in Computer Security.Cham:Springer,2017:167-186. [20]ZENG W,HU H C,LI L S,et al.Dynamic heterogeneous sche-duling method based on Stackelberg game model in container cloud[J].Chinese Journal of Network and Information Security,2021,7(3):95-104. [21]CONNELL W,MENASCE D A,ALBANESE M.Performancemodeling of moving target defenses with reconfiguration limits[J].IEEE Transactions on Dependable and Secure Computing,2018,18(1):205-219. [22]MALEKI H,VALIZADEH S,KOCH W,et al.Markov mode-ling of moving target defense games[C]//Proceedings of the 2016 ACM Workshop on Moving Target Defense.2016:81-92. [23]PENG W,LI F,HUANG C T,et al.A moving-target defense strategy for cloud-based services with heterogeneous and dynamic attack surfaces[C]//2014 IEEE International Conference on Communications(ICC).IEEE,2014:804-809. [24]HONG J B,KIM D S.Assessing the effectiveness of moving target defenses using security models[J].IEEE Transactions on Dependable and Secure Computing,2015,13(2):163-177. [25]ALAVIZADEH H,KIM D S,JANG-JACCARD J.Model-based evaluation of combinations of shuffle and diversity MTD techniques on the cloud[J].Future Generation Computer Systems,2020,111:507-522. [26]HUTCHINS E M,CLOPPERT M J,AMIN R M.Intelligence-driven computer network defense informed by analysis of adversary campaigns and intrusion kill chains[J].Leading Issues in Information Warfare & Security Research,2011,1(1):80. [27]INGOLS K,LIPPMANN R,PIWOWARSKI K.Practical attack graph generation for network defense[C]//2006 22nd Annual Computer Security Applications Conference(ACSAC'06).IEEE,2006:121-130. [28]FIRST.Common Vulnerability Scoring System v3.1:Specification Document[EB/OL].https://www.first.org/cvss/v3.1/specification-document. [29]LI H,GUO Y,SUN P,et al.An optimal defensive deceptionframework for the container-based cloud with deep reinforcement learning[J].IET Information Security,2022,16(3):178-192. [30]CASAS I,TAHERI J,RANJAN R,et al.GA-ETI:an enhanced genetic algorithm for the scheduling of scientific workflows in cloud environments[J].Journal of Computational Science,2018,26:318-331. [31]TAHIR M,SARDARAZ M,MEHMOOD Z,et al.CryptoGA:a cryptosystem based on genetic algorithm for cloud data security[J].Cluster Computing,2021,24(2):739-752. |
|