计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 221100030-8.doi: 10.11896/jsjkx.221100030
黄飞虎1,2, 帅剑波2, 彭舰2
HUANG Feihu1,2, SHUAI Jianbo2, PENG Jian2
摘要: 推荐系统主要基于用户信息提供个性化服务。然而,用户对数据隐私泄露的广泛关注,给当前推荐算法提出了新的挑战。现有工作主要从差分隐私、匿名化、密码学和联邦学习的角度解决隐私泄露问题,但存在数据扰动和计算复杂的缺点。不同于现有工作,文中提出了基于课程学习和图神经网络的协同过滤模型(CLG-CF),充分利用评分表在隐式反馈的场景学习用户和物品嵌入。CLG-CF利用二部图建模评分表,基于图卷积网络实现用户和物品的表示学习,然后通过多层神经网络完成(用户,物品)对的预测。CLG-CF模型在训练过程中,采用负采样计算增强样本,为了解决样本的真伪问题,创新地引入课程学习指导模型学习。在3个真实的大规模数据集上进行了实验,结果表明 CLG-CF模型在不使用用户和物品信息的情况下,能够实现不错的推荐效果。
中图分类号:
[1]REN S L,GUO H J,HUANG W H,et al.RecommendationMethod Based on Attention Mechanism InteractiveConvolu-tional Neural Network[J].Computer Science,2022,49(10):126-131. [2]HUANG F,QIAO S,PENG J,et al.STPR:A Personalized Next Point-of-InterestRecommendation Model with Spatio-Temporal Effects Based on Purpose Ranking[J].IEEE Transactions on Emerging Topics in Computing,2021,9(2),994-1005. [3]XU B,YI P Y,WANG J C,et al.High order Collaborative Filtering Recommendation System Based on Knowledge Graph Embedding[J].Computer Science,2021,48(S2):244-250. [4]XU H,HUANG F,PENG J,et al.Intent-Aware Graph Neural Networks for Session-based Recommendation[C]//Interna-tional Joint Conference on Neural Networks(IJCNN).20221-8. [5]TIAN L,HONG S.Research on legal regulation of the Big Data affinity[J].Cyber Security and Data Governance,2022,41(7):41-46. [6]WANG L E,LI X C,LIU H Y.News recommendation method with knowledge graph and differential privacy[J].Journal of Computer Applications,2022,42(5):1339-1346. [7]WEI R X,TIAN H,SHEN H.Improving k-anonymity basedprivacy preservation for collaborative filtering[J].Computers & Electrical Engineering,2018,67:509-519 [8]ZHANG H L,LI P D,WU J,et al.A Survey on Privacy-preserving Federated Recommender Systems[J].Acta Automatic Sini,2022,48(9):2142-2163. [9]LIN G,LIANG F,PAN W,et al.Fedrec:Federated recommendation with explicit feedback[J].IEEE Intelligent Systems,2020,36(5):21-30 [10]LING Y,CUO O,CAI F,et al.User-based clustering with top-n recommendation on cold-start problem[C]//2013 Third International Conference on Intelligent System Design and Engineering Applications.IEEE,2013:1585-1589. [11]ZHOU K,YANG S H,ZHA H.Functional matrix factorizations for cold-start recommendation[C]//Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval.2011:315-324. [12]ZHANG Y,CALLAN J,MINKA T.Novelty and redundancydetection in adaptive filtering[C]//Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.2002:81-88. [13]ROBERTSON S.Threshold setting and performance optimiza-tion in adaptive filtering[J].Information Retrieval,2002,5(2):239-256. [14]ZHOU G,ZHU X,SONG C,et al.Deep interest network for click-through rate prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:1059-1068. [15]ZHOU G,MOU N,FAN Y,et al.Deep interest evolution network for click-through rate prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:5941-5948. [16]SALAKHUTDINOV R,MNIH A,HINTON G.Restricted Boltzmann machines for collaborative filtering[C]//Proceedings of the 24th International Conference on Machine Learning.2007:791-798. [17]WANG H,ZHANG F,XIE X,et al.DKN:Deep knowledge-aware network for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference.2018:1835-1844. [18]YING R,HE R,CHEN K,et al.Graph convolutional neural networks for web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:974-983. [19]BERG R V D,KIPF T N,WELLING M.Graph convolutional matrix completion[J].arXiv:170602263,2017. [20]ZHANG M,CHEN Y.Inductive matrix completion based ongraph neural networks[J].arXiv:190412058,2019. [21]WANG X,HE X,WANG M,et al.Neural graph collaborativefiltering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174. [22]BENGIO Y,LOURADOUR J,COLLOBERT R,et al.Curriculum learning[C]//Proceedings of the 26th Annual International Conference on Machine Learning.2009:41-48. [23]WANG W,FENG F,HE X,et al.Denoising implicit feedback for recommendation[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining.2021:373-381. [24]PEROZZI B,AL-RFOU R,SKIENA S.Deepwalk:Online lear-ning of social representations[C]//Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining.2014:701-710. [25]CAO J,LIN X,GUO S,et al.Bipartite graph embedding via mutual informationmaximization[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mi-ning.2021:635-643. |
|