计算机科学 ›› 2023, Vol. 50 ›› Issue (12): 343-348.doi: 10.11896/jsjkx.221100111

• 信息安全 • 上一篇    下一篇

面向全局不平衡问题的基于贡献度的联邦学习方法

吴飞1, 宋一波2, 季一木2, 胥熙2, 王木森2, 荆晓远3   

  1. 1 南京邮电大学自动化学院 南京 210003
    2 南京邮电大学计算机学院 南京 210003
    3 武汉大学计算机学院 武汉 430072
  • 收稿日期:2022-11-11 修回日期:2023-02-17 出版日期:2023-12-15 发布日期:2023-12-07
  • 通讯作者: 吴飞(wufei_8888@126.com)
  • 基金资助:
    国家自然科学基金(62076139);之江实验室开放课题(2021KF0AB05);未来网络科研基金项目(FNSRFP-2021-YB-15);南京邮电大学1311人才计划

Contribution-based Federated Learning Approach for Global Imbalanced Problem

WU Fei1, SONG Yibo2, JI Yimu2, XU Xi2, WANG Musen2, JING Xiaoyuan3   

  1. 1 College of Automation,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
    2 School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
    3 School of Computer Science,Wuhan University,Wuhan 430072,China
  • Received:2022-11-11 Revised:2023-02-17 Online:2023-12-15 Published:2023-12-07
  • About author:WU Fei,born in 1989,Ph.D,associate professor,is a member of China Computer Federation.His main research interests include pattern recognition and machine learning.
  • Supported by:
    National Natural Science Foundation of China(62076139),Open Research Project of Zhejiang Lab(2021KF0AB05),Future Network Scientific Research Fund Project(FNSRFP-2021-YB-15) and 1311 Talent Program of Nanjing University of Posts and Telecommunications.

摘要: 联邦学习在保护各方数据隐私的前提下,协同多方共同训练,提高了全局模型的精度。数据的类不平衡问题是联邦学习范式中具有挑战的问题,联邦学习中的数据不平衡问题可分为局部数据不平衡和全局数据不平衡,目前针对全局数据不平衡问题的相关研究较少。文中提出了一种面向全局不平衡问题的基于贡献度的联邦学习方法(CGIFL)。首先,设计了一种基于贡献度的全局判别损失函数,用于调整本地训练过程中的模型优化方向,使模型在训练中给予全局少数类更多的关注,以提高模型的泛化能力;然后,在全局模型更新阶段,设计了一种基于贡献度的动态联邦汇聚策略,优化了各节点的参与权重,更好地平衡了全局模型的更新方向。在MNIST,CIFAR10和CIFAR100这3个数据集上进行实验,实验结果表明了CGIFL在解决全局数据不平衡问题上的有效性。

关键词: 联邦学习, 数据不平衡, 多方协同, 图像分类

Abstract: Under the premise of protecting the data privacy,federated learning unites multiple parties to train together to improve the accuracy of the global model.Class imbalance of data is a challenging problem in the federated learning paradigm.Data imba-lance in federated learning can be divided into local data imbalance and global data imbalance.At present,there are few researches on global data imbalance.This paper proposes a contribution-based federated learning approach for global imbalance problem(CGIFL).First,a contribution-based global discriminant loss is designed to adjust the model optimization direction in the local training process and make models give more attention to the global minority classes in training to improve the generalization ability of models.And a contribution-based dynamic federated aggregation algorithm is designed to optimize the participation weight of each node and better balance the updating direction of the global model.Experimental results on MNIST,CIFAR10 and CIFAR100 datasets demonstrate the effectiveness of CGIFL in solving the problem of global data imbalance.

Key words: Federated learning, Data imbalance, Multi-party coordination, Image classification

中图分类号: 

  • TP391
[1]MOHAMMADI M,AL-FUQAHA A,SOROUR S,et al.Deeplearning for IoT big data and streaming analytics:A survey[J].IEEE Communications Surveys & Tutorials,2018,20(4):2923-2960.
[2]YANG Q,LIU Y,CHEN T,et al.Federated machine learning:Concept and applications[J].ACM Transactions on Intelligent Systems and Technology,2019,10(2):1-19.
[3]WANG L,XU S,WANG X,et al.Addressing class imbalance in federated learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021,35(11):10165-10173.
[4]KAIROUZ P,MCMAHAN H B,AVENT B,et al.Advancesand open problems in federated learning[J].Foundations and Trends in Machine Learning,2021,14(1/2):214-217.
[5]ZHONG Y,DENG W,WANG M,et al.Unequal-training for deep face recognition with long-tailed noisy data[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:7812-7821.
[6]LENG Z,TAN M,LIU C,et al.PolyLoss:A Polynomial Expansion Perspective of Classification Loss Functions[J].arXiv:2204.12511,2022.
[7]DENG L.The mnist database of handwritten digit images formachine learning research[best of the web][J].IEEE Signal Processing Magazine,2012,29(6):141-142.
[8]KRIZHEVSKY A,HINTON G.Learning multiple layers of features from tiny images[R].Technical report,University of Toronto,2009.
[9]BENNIN K E,KEUNG J,PHANNACHITTA P,et al.Ma-hakil:Diversity based oversampling approach to alleviate the class imbalance issue in software defect prediction[J].IEEE Transactions on Software Engineering,2017,44(6):534-550.
[10]LIU X Y,WU J,ZHOU Z H.Exploratory undersampling forclass-imbalance learning[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B(Cybernetics),2008,39(2):539-550.
[11]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2980-2988.
[12]WU Y,LIU H,LI J,et al.Deep face recognition with center invariant loss[C]//Proceedings of the on Thematic Workshops of ACM Multimedia 2017.2017:408-414.
[13]LI T,SAHU A K,ZAHEER M,et al.Federated optimization in heterogeneous networks[J].Proceedings of Machine Learning and Systems,2020,2:429-450.
[14]LI Q,HE B,SONG D.Model-contrastive federated learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:10713-10722.
[15]ZHAO Y,LI M,LAI L,et al.Federated learning with non-iid data[J].arXiv:1806.00582,2018.
[16]SARKAR D,NARANG A,RAI S.Fed-focal loss for imbalanced data classification in Federated Learning[J].arXiv:2011.06283,2020.
[17]DUAN M,LIU D,CHEN X,et al.Self-balancing federatedlearning with global imbalanced data in mobile systems[J].IEEE Transactions on Parallel and Distributed Systems,2020,32(1):59-71.
[18]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-basedlearning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
[19]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778.
[20]MCMAHAN H B,MOORE E,RAMAGE D,et al.Federated learning of deep networks using model averaging[J].arXiv:1602.05629,2016.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!