计算机科学 ›› 2023, Vol. 50 ›› Issue (5): 82-92.doi: 10.11896/jsjkx.221100160

• 可解释性人工智能 • 上一篇    下一篇

知识驱动的机械设备故障诊断

董家祥, 翟纪宇, 马昕, 沈磊贤, 张力   

  1. 清华大学软件学院 北京 100084
  • 收稿日期:2022-11-18 修回日期:2023-02-24 出版日期:2023-05-15 发布日期:2023-05-06
  • 通讯作者: 张力(lizhang@tsinghua.edu.cn)
  • 作者简介:(djx20@mails.tsinghua.edu.cn)
  • 基金资助:
    国家自然科学基金(71690231)

Mechanical Equipment Fault Diagnosis Driven by Knowledge

DONG Jiaxiang, ZHAI Jiyu, MA Xin, SHEN Leixian, ZHANG Li   

  1. School of Software,Tsinghua University,Beijing 100084,China
  • Received:2022-11-18 Revised:2023-02-24 Online:2023-05-15 Published:2023-05-06
  • About author:DONG Jiaxiang,born in 1994,doctoral student.His main research interests include construction and application of domain knowledge graph,big data analysis.
    ZHANG Li,born in 1960,Ph.D,professor,Ph.D supervisor.His main research interests include knowledge graph,industrial big data,and real-time computing.
  • Supported by:
    National Natural Science Foundation of China(71690231).

摘要: 随着社会经济的快速发展,现代工业逐渐呈现出研究对象复杂化、应用手段信息化和生产方式多元化的发展趋势。机械故障诊断作为现代工业重要的研究领域之一,由于故障机理研究不足和可参考知识匮乏等问题,仍然存在一系列技术瓶颈。为应对上述问题,文中提出了知识驱动的机械设备故障诊断方案,主要包括知识构建和诊断流程两个部分。在知识构建方面,提出了领域知识图谱构建方法;在诊断流程方面,设计了一个通用的机械设备故障诊断流程,该流程包括故障问诊、故障定位、起因定位和故障维修指导4个步骤。目前,该方案已经在国内某大型挖掘机维修商实际落地应用,并对其进行了有效性验证,实验结果表明该方案提高了挖掘机故障诊断领域的知识化程度和智能化水平,并表现出了较高的准确性和实用性,后续将在工业界持续推广使用。

关键词: 机械设备, 故障诊断, 知识驱动, 领域知识图谱

Abstract: With the rapid development of social economy,modern industry now presents a trend featuring complex research objects,informationalized application methods and diversified production modes.Industrial fault diagnosis,as one of the most important research areas in modern industry,is still facing a series of technical bottlenecks due to the complexity of mechanical equipment and the lack of referential knowledge.In order to solve the above problems,this paper proposes a knowledge-driven fault diagnosis scheme for mechanical equipment,which mainly includes two parts——knowledge construction and diagnosis process.In terms of knowledge construction,this paper presents a domain knowledge graph construction method.In terms of diagnosis process,this paper designs a general mechanical equipment fault diagnosis process consisting of four steps,fault inquiry,fault location,fault cause location and fault maintenance guidance.To date,the scheme has been actually applied in a large excavator maintenance provider in China,and its effectiveness has been verified.Experimental results indicate the scheme improves the know-ledge and intelligent level of excavator fault diagnosis and shows high accuracy and practicability.The application of the scheme will be further promoted in the industry.

Key words: Mechanical equipment, Fault diagnosis, Knowledge driven, Domain knowledge graph

中图分类号: 

  • TP311
[1]LI Q Y.Engineering machinery(2nd edition)[M].Changsha:Central South University Press,2012:12-14.
[2]LI J G,ZHANG J,GU Y.Mechanical fault diagnosis[M].Beijing:Chemical Industry Press,1999:23-25.
[3]WANG G B,HE Z J,CHEN X F,et al.Basic research on machinery fault diagnosism what is the prescription[J].Journal of Mechanical Engineering,2013,49(1):63-72.
[4]JI S,PAN S,CAMBRIA E,et al.A survey on knowledgegraphs:Representation,acquisition,and applications[J].IEEE Transactions on Neural Networks and Learning Systems,2021,33(2):494-514.
[5]WANG H F,QI G L,CHEN H J.Knowledge graph:methods,practices and applications[M].Beijing:Electronic Industry Press,2020:56-67.
[6]HOGAN A,BLOMQVIST E,COCHEZ M,et al.Knowledgegraphs[J].ACM Computing Surveys(CSUR),2021,54(4):1-37.
[7]SHADBOLT N,BERNERS-LEE T,HALL W.The semanticweb revisited[J].IEEE Intelligent Systems,2006,21(3):96-101.
[8]LI C,LI A,WANG Y,et al.A survey on approaches and applications of knowledge representation learning[C]//2020 IEEE Fifth International Conference on Data Science in Cyberspace(DSC).New York:IEEE Press,2020:312-319.
[9]LENAT D B,PRAKASH M,SHEPHERD M.CYC:Using com-mon sense knowledge to overcome brittleness and knowledge acquisition bottlenecks[J].AI Magazine,1985,6(4):65-65.
[10]MILLER G A.WordNet:a lexical database for English[J].Communications of the ACM,1995,38(11):39-41.
[11]LIU H,SINGH P.ConceptNet-a practical commonsense rea-soning tool-kit[J].BT Technology Journal,2004,22(4):211-226.
[12]BOLLACKER K,COOK R,TUFTS P.Freebase:a shared database of structured general human knowledge[C]//Proceedings of the 22nd National Conference on Artificial ntelligence.Menlo Park,CA:AAAI,2007:1962-1963.
[13]VRANDEČIĆ D,KRÖTZSCH M.Wikidata:a free collaborative knowledgebase[J].Communications of the ACM,2014,57(10):78-85.
[14]WANG H,DING T Y,BROWN J L,et al.Data Driven Fault Diagnosis and Fault Tolerant Control:Some Advances and Possible New Directions[J].Acta Automatica Sinica,2009,35(6):739-747.
[15]GAO Z,CECATI C,DING S X.A survey of fault diagnosis and fault-tolerant techniques-Part I:Fault diagnosis with model-based and signal-based approaches[J].IEEE Transactions on Industrial Electronics,2015,62(6):3757-3767.
[16]BEARD R V.Failure accomodation in linear systems throughself-reorganization[D].Cambridge:Massachusetts Institute of Technology,1971.
[17]DADON I,KOREN N,KLEIN R,et al.A realistic dynamicmodel for gear fault diagnosis[J].Engineering Failure Analysis,2018,84:77-100.
[18]YANG G,YU S.Construction Research ofDiagnostic Know-ledge Base Based on Decision Technology and RS Theory[C]//Recent Developments in Intelligent Computing,Communication and Devices(ICCD 2017).Singapore:Springer 2019:311-323.
[19]ASKIN R G,DROR M,VAKHARIA A J.Printed circuitboardfamily grouping and component allocation for a multimachine,open-shop assembly cell[J].Naval Research Logistics(NRL),1994,41(5):587-608.
[20]COSTAMAGNA P,DE GIORGI A,MOSER G,et al.Data-dri-ven techniques for fault diagnosis in power generation plants based on solid oxide fuel cells[J].Energy Conversion and Ma-nagement,2019,180:281-291.
[21]NOY N F,MCGUINNESS D L.Ontology development 101:A guide to creating your first ontology[J].Stanford Knowledge Systems Laboratory Technical Report KSL-01-05,2001(5):1-33.
[22]Neo4j.(2021)[EB/OL].http://www.neo4j.com.
[23]GOU J,JIANG Y,WU Y,et al.A New Knowledge FusionMethod Based on Semantic Rules[C]//2006 8th International Conference on Signal Processing.New York:IEEE Press,2006:3.
[24]RISTAD E S,YIANILOS P N.Learning string-edit distance[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(5):522-532.
[25]SADOWSKI C,LEVIN G.Simhash:Hash-based similarity detection[R].Santa Cruz:University of California,2011.
[26]MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[J].arXiv:1301.3781,2013.
[27]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018.
[28]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[C]//Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2013:2787-2795.
[29]CARD S K,MORAN T P,NEWELLA.The keystroke-levelmodel for user performance time with interactive systems[J].Communications of the ACM,1980,23(7):396-410.
[1] 黄迅迪, 庞雄文.
基于深度学习的智能设备故障诊断研究综述
Review of Intelligent Device Fault Diagnosis Based on Deep Learning
计算机科学, 2023, 50(5): 93-102. https://doi.org/10.11896/jsjkx.220500197
[2] 梁静茹, 鄂海红, 宋美娜.
基于属性图模型的领域知识图谱构建方法
Method of Domain Knowledge Graph Construction Based on Property Graph Model
计算机科学, 2022, 49(2): 174-181. https://doi.org/10.11896/jsjkx.210500076
[3] 黄晓玲, 张德平.
基于通道拆分CLAHE和自适应阈值残差网络的变工况故障诊断
Fault Diagnosis Based on Channel Splitting CLAHE and Adaptive Threshold Residual NetworkUnder Variable Operating Conditions
计算机科学, 2022, 49(11A): 211100122-7. https://doi.org/10.11896/jsjkx.211100122
[4] 高际航, 张艳.
基于FWA-PSO-MSVM的船舶区域配电电力系统故障诊断
Fault Diagnosis of Shipboard Zonal Distribution Power System Based on FWA-PSO-MSVM
计算机科学, 2022, 49(11A): 210800209-5. https://doi.org/10.11896/jsjkx.210800209
[5] 雷剑梅, 曾令秋, 牟洁, 陈立东, 王淙, 柴勇.
基于整车EMC标准测试和机器学习的反向诊断方法
Reverse Diagnostic Method Based on Vehicle EMC Standard Test and Machine Learning
计算机科学, 2021, 48(6): 190-195. https://doi.org/10.11896/jsjkx.200700204
[6] 王焘, 张树东, 李安, 邵亚茹, 张文博.
一种面向异常传播的微服务故障诊断方法
Anomaly Propagation Based Fault Diagnosis for Microservices
计算机科学, 2021, 48(12): 8-16. https://doi.org/10.11896/jsjkx.210100149
[7] 王铁鑫, 李文心, 曹静雯, 杨志斌, 黄志球, 王飞.
知识驱动的企业间协作参与者动态推荐方法
Knowledge-driven Method Towards Dynamic Partners Recommendation in Inter-enterprise Collaboration
计算机科学, 2020, 47(6): 210-218. https://doi.org/10.11896/jsjkx.190700194
[8] 朱晓玲, 李琨, 张长胜, 杜付鑫.
基于Gabor小波变换和多核支持向量机的电梯导靴故障诊断方法
Elevator Boot Fault Diagnosis Method Based on Gabor Wavelet Transform and Multi-coreSupport Vector Machine
计算机科学, 2020, 47(12): 258-261. https://doi.org/10.11896/jsjkx.200700039
[9] 林毅, 吉鸿江, 韩佳佳, 张德平.
一种基于马氏距离的系统故障诊断方法
System Fault Diagnosis Method Based on Mahalanobis Distance Metric
计算机科学, 2020, 47(11A): 57-63. https://doi.org/10.11896/jsjkx.190900174
[10] 郭杨, 梁家荣, 刘峰, 谢敏.
一种基于超立方体网络的高效故障诊断并行算法
Novel Fault Diagnosis Parallel Algorithm for Hypercube Networks
计算机科学, 2019, 46(5): 73-76. https://doi.org/10.11896/j.issn.1002-137X.2019.05.011
[11] 王岩, 罗倩, 邓辉.
基于变分贝叶斯的轴承故障诊断方法
Bearing Fault Diagnosis Method Based on Variational Bayes
计算机科学, 2019, 46(11): 323-327. https://doi.org/10.11896/jsjkx.180901719
[12] 张刚, 高俊鹏, 李红威.
级联三稳态随机共振的特性研究及应用
Research on Stochastic Resonance Characteristics of Cascaded Three-steady-state and Its Application
计算机科学, 2018, 45(9): 146-151. https://doi.org/10.11896/j.issn.1002-137X.2018.09.023
[13] 张斌,滕俊杰,满毅.
改进的并行fp-growth算法在工业设备故障诊断中的应用研究
Application Research of Improved Parallel Fp-growth Algorithm in Fault Diagnosis
of Industrial Equipment
计算机科学, 2018, 45(6A): 508-512.
[14] 薛善良,杨佩茹,周奚.
基于模糊神经网络的WSN无线数据收发单元故障诊断
WSN Wireless Data Transceiver Unit Fault Diagnosis with Fuzzy Neural Network
计算机科学, 2018, 45(5): 38-43. https://doi.org/10.11896/j.issn.1002-137X.2018.05.006
[15] 张妮,车立志,吴小进.
基于数据驱动的故障诊断技术研究现状及展望
Present Situation and Prospect of Data-driven Based Fault Diagnosis Technique
计算机科学, 2017, 44(Z6): 37-42. https://doi.org/10.11896/j.issn.1002-137X.2017.6A.008
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!